Introduction to Service-Oriented Architecture

Michael Stiefel
www.reliablesoftware.com
development@reliablesoftware.com

Copyright Reliable Software, Inc.
Goal

Understand Service Oriented Architecture (SOA)
Why?

Number Months To Revamp: Sales Marketing Change Buildings

= Number Years To Revamp IT

Copyright Reliable Software, Inc.
Fundamental Principle

Service Oriented Architecture driven by business, not technical needs.
Observation #1

A SOA is architected, not bought...

Contrary to the view of many vendors
Observation #2

It is a journey, not a destination...

About approaches and principles, not fixed technical approaches or specific implementation technologies
Observation #3

Focus on reuse, agility, integration, standards interoperability ...

Leads to fuzziness that makes people confused, wary and unhappy.
Architecture

Study of the principles of design, construction, and esthetics of buildings

The profession of designing, constructing, and ornamenting buildings

The structure and organization of a particular building or class of buildings
The confusion is that SOA is about the first definition not the last.
SOA is an Architectural Style

Principles vary over historical periods
Principles vary over the artifacts constructed
Modern Business Environment

Cannot rebuild every application from scratch

Customers’ demands change quickly over time

Depend on vendors and suppliers
SOA is not about building an application that meets specific business functionality or goals such as ROI or cost effectiveness.
SOA is about the principles of constructing loosely coupled, reusable, application-agnostic business services.
Sandwich Shop Parable

Place Order
Pay For Order
Make Sandwich
Deliver Sandwich
Parable Implication #1

The Sandwich shop has capabilities. Customers have needs.

A service allows needs and capabilities to interact.

The service provider provides the service.

Service consumer uses the service.
Parable Implication #2

For capabilities and needs to be met you need:

Visibility

Interaction

Real World Effect
Parable Implication #3

Real World Effect is about business behavior, not programming constructs or objects.

Behaviors cross trust boundaries.

Marketplace of interactions.

SOA is different from other distributed architectural paradigms.
Parable Implication #4

In order for the participants to interact, they have to agree on common terminology, or *semantics*, for the *interaction*.
Parable Implication #5

This *interaction* occurs within an *Execution Context*

Contract
Policy
Behavior Model
Information Model
Parable Implication #6

Focusing on behaviors leads to more scalable systems
Focusing on behaviors leads to a flexible IT portfolio
Benefits

Scalable Paradigm
Encourages Agility
Encourages Interoperability, Standards
Makes Explicit Ownership Boundaries
OASIS Reference Model

Parable implications are defined as a vocabulary in a *Reference Model for Service Oriented Architectures*

Developed under the auspices of the *OASIS* standards organization

Current Committee Draft is open for general comment
SOA

SOA is a paradigm for organizing and utilizing distributed capabilities that may be under the control of different ownership domains.

SOA is a framework for meeting needs with some combination of capabilities.
Sandwich Services

Sandwich Shop is the Service Provider
Customers are the Service Consumers
Service interface defines
 service interaction
 explicit boundary for code and data
Separate independent, reusable capabilities
Service Description

Service Interface
Policy
Information Model
Behavior Model
Provides Visibility
Defines Real World Effect
Defines Reachability
Service Policy

Expression of service requirements
Constraints for message processing
Guides analysis of business activities
Establishes parameters of activities

Service consumers must understand policy independent of making a request
Semantic Engagement

Service Consumer and *Provider*
have to understand each other
Clear Semantics
Information Model
Behavior Model
Understand *Real World Effects*
Execution Context

Policy Decision Point
Contract Enforcement
Common Infrastructure
 Messaging
Different Instances, Different Contexts
Third Parties
 Government
Discovery

Service Consumer must be made *aware* of the existence of the *Service Provider*

“Ask Alice”

Advertising Registry
Sandwich Contract

Ordered sequence of versioned messages that represent business documents
Series of asynchronous declarative messages
 Request sandwich, no immediate response
Sandwich ready message arrives with no request
Document Centered

Exchange Documents/Messages

No access of remote objects
Contract: content, order of messages
Can contain their own state

No instructions to sandwich maker in request

No programmatic types, just business description
Sandwich Service Interactions

Payment service independent of sandwich making
Long lived interactions / transactions
No sharing of dynamic data such as bread inventory
Can query static data, sandwich composition
Loose Coupling

Several independent services complete “order”
Dynamic substitution possible
More fault tolerant with multiple revisions
Easier to change business process

Engineering Tradeoff
Services are bound at execution, not compilation
Sandwich Policy

Credit Cards accepted; No personal checks
Store hours are from 7 AM to 6:30 PM
Take phone orders except during lunch time
2 minutes from order to sandwich ready
30 minute delivery time or its free

Can query policy independently of going to the store or placing an order

Copyright Reliable Software, Inc.
Service Transactions

Real world is asynchronous, occasionally connected
Two phase commit is hard enough
Compensating transactions
Credit card charge backs
Removing orders from queue
Better scalability
Versioning

Change a contract, policy, or schema of a document
No recompilation

Existing contracts still work, unlike execution environment interfaces
Just reject unknown documents, or unsupported versions
Service reuse is likely to succeed where object reuse failed, because services are loosely coupled, and based on actual business activities, not on programmatic abstractions.
No UI in SOA

UI is application development
Composite applications use services
 Services will use other services
Allows services to be used from web, mobile device, fax, phone call, or in-person visit

Copyright Reliable Software, Inc.
Policy and Applications

Application must be able to query policy to validate message before sending it

Design or Runtime

Service will still need to check against policy
Agility

Reusing services allows:
- quicker response to new requirements
- reduces the time needed to compose new applications making customers happier
- decrease the cost of composing new business applications
- reduces vendor lock-in and /or switching costs if services can be easily replaced
Interoperability / Integration

Interoperate with third party services
Integrate legacy applications as reusable services
Object Oriented Evolution

Reuse through Inheritance
Fragile Base Class Problem
“Inheritance Breaks Encapsulation”
Reuse with Interface and Composition
Reuse through Templates
Dynamic Interface, Behavior Reuse with Contracts

Copyright Reliable Software, Inc.
Service vs. Object

Services
- Not new, but not familiar
- Heterogeneous Environment
- Schema
- Addressing
- Latency, Partial Failure, Concurrency
- Loose Coupling / Messaging
- Execution Time Binding
- Security Throughout
- Model Real World Processes

Objects
- Well-understood
- Single Execution Environment
- Type
- Object References / Addresses
- Assume fast, transparent network
- Linkers and Loaders
- Compile / Link Time Binding
- Usually at the Boundaries
- Model Programming Constructs

See Waldo, et. al. *A Note on Distributed Computing*
Business Process

Several services may be “orchestrated” together
Human intervention part of process
Activities can transcend business unit boundaries
Home Mortgage Process

To obtain a home mortgage:
- Process Loan Application
- Do Credit Check
- Decide Credit Worthiness
- Do Home Appraisal
- Decide Loan Viability
How to Find the Services

Focus on Stable Business Capabilities
What will your business continue to do?
Example: Mortgage Loan Service
Loan Origination for Various Products
Credit Check
Loan Scoring, Rating and Approval
Loan Servicing
Implementation Technologies

WS-Lite
 XML, SOAP, WSDL

WS-Heavy
 WS-Lite + WS-Security, WS-Addressing, etc.

Representational State Transfer (REST)

XML over HTTP (POX)
Transportation Parable

Implications of large scale
Driven by Economics and
Social Factors
Evolves over time
Business, people =>
independent, loosely
coupled services
Complex interconnection of
business, vendors, suppliers
=> composite applications
Enterprise Services

Manufacturers, service providers, people => services

Business is done via “contracts”, explicit or implicit
Business Processes

“Composite applications” as various services work together

Accounting, billing, shipping, receiving, sales, production

These services may be internal or outsourced

Loose coupling => use various suppliers, vendors, employees

Business is “orchestrated” together
Open Standards Messaging

Travel by cars, trucks, buses, trains, planes => messages
Traffic Laws
Legal Regulations
Car, Plane standards
Mixture of proprietary and “open” standards
Enterprise Policy

Policy set by businesses and individuals
Credit Terms, etc.
“Public Policy”
Speed Limits
Signage
Enforcement

Copyright Reliable Software, Inc.
Implications of the Parable...
Continued Investment

Who decides:

Where do the new roads, track, or airports go?
Which are maintained at what level?
Which are upgraded to new standards?
How is this paid for?
Infrastructure

Police for roads, maintenance crews, fire departments, traffic departments
Standard road signs,
Determining speed limits
Road design standards (curve angles for speeds), merge lanes
Accident control, emergency services
Financing of improvements
Toll collection (if any)
Governance is necessary to make this work...
IT Governance

Who makes maintenance and infrastructure decisions?
Who pays for the common infrastructure?
Who makes sure it stays shared?
How do the monies get distributed?
Business units are judged by ROI
Sarbanes-Oxley, HIPAA Compliance
SOA Pioneers

Credit Suisse First Boston
Deutsche Post
Dell Supply Chain
Disney
EBay
Amazon
Rearden Commerce

Employee Business Services (EBS)
 B2B non PO services Marketplace
 Travel Services, Conferencing, Small Package Delivery

Corporate Customers:
 Motorola, Whirlpool, Warner Home Video
 HP, American Express will resell EBS

Browser-based applications can run on desktop or intelligent cell phone

Copyright Reliable Software, Inc.
Employee Business Services

Customers and Suppliers can build applications based on their own business activities and identity management rules. Reardon has defined flexible schemas for policy, service orchestration, and identity management. Tied together with web services, a graphical application for end users to create composite applications.
SOA vs. CORBA, DCOM, EDI

Designed to simplify construction of distributed systems.
Not interoperable
Based on static programming calls with fixed application signatures
Often based on objects that were not a clear match to business semantics
SOA can support business documentation standards ANSI X12, ebXML, EDI, HL7, ICE9.
Web Services

Web Services
Independent of Execution Environment
Loosely Coupled integration
Open Standards (WS*)

Contract first development
XML and XML Schema for defining service messages
SOAP for message transport
WSDL for contract definition

Orchestrate services into business processes
Wonder City Metropolitan Area Medical System Case Study
Current Problems

Patient information is incorrect, missing, or at another location

Cannot find specialists quickly for difficult diagnoses

Inefficient allocation of resources
 laboratories, nurses, operating rooms, blood, supplies, surgical equipment, rooms, etc.

Patient information is not secure
Consequences

Patients are misdiagnosed
Critical tasks are not correctly scheduled
Wastes time and money leading to higher medical costs
Lower quality of life for staff and patients
HIPAA compliance is difficult
Use Case

Patient is critical, but stable
Can patient be admitted to the hospital?
 Does hospital have a spare room?
Does patient need surgery?
 Run tests
 Consult with other doctors
What are the Business Services?
Simple SOAP Message

<PatientAdmission xmlns="urn:CriticalCarePatient">
 <Patient>
 <Last>Piper</Last>
 <First>Peter</First>
 </Patient>
 <Address>
 <Street>123 Hampshire</Street>
 <City>Cambridge</City>
 <State>MA</State>
 <Zip>02139</Zip>
 </Address>
 <SSN>111-22-3333</SSN>
 <Diagnosis>massive heart palpitations</Diagnosis>
</PatientAdmission>
X-Ray Attachment

MIME-Version: 1.0
Content-type: Multipart/Related; boundary=MIME_boundary;
 type="application/xop+xml"
 start="<doctorjones@bighospital.com>"
 startinfo="application/soap+xml; action="ProcessXRay"
Content-description: SOAP response to x-ray request
--MIME_boundary
Content-type: application/xop+xml;
 charset="UTF-8";
 type="application/soap+xml; action="ProcessXRay"
Content-Transfer-Encoding: 8bit
Content-ID: <doctorjones@bighospital.com>
<env:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xmlmime="http://www.w3.org/2004/06/xmlmime"
 xmlns:xop="http://www.w3.org/2004/08/xop/include">
 <env:Header>
 <wsa:To>http://www.bighospital.com/PatientAdmissionXRay</wsa:To>
 </env:Header>
 <env:Body>
 <xray:xraytransmit xmlns:xray="bighospital/xray.xsd">
 <xray:content xmlmime:contentType="application/octet-stream">
 <xop:Include href="cid: doctorjones /patient123xray1.zip"/>
 </xray:content>
 </xray:xraytransmit>
 </env:Body>

Copyright Reliable Software, Inc.
Web Service Definition

Types in XML Schema
Services in WSDL
SOAP Addressing

<env:Envelope xmlns:env="http://w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing">
 <env:Header>
 <wsa:To>
 <wsa:Address>http://countygeneralhospital/criticalcare</wsa:Address>
 </wsa:To>
 <wsa:From>
 <wsa:Address>http://doctorjones</wsa:Address>
 </wsa:From>
 <wsa:ReplyTo>
 <wsa:Address>http://doctorjones</wsa:Address>
 </wsa:ReplyTo>
 <wsa:FaultTo>
 <wsa:Address>http://doctorjones</wsa:Address>
 </wsa:FaultTo>
 <wsa:Action>urn:PatientAdmittanceRequest</wsa:Action>
 <wsa:MessageID>
 uuid:12345678-1234-5678-123456789012
 </wsa:MessageID>
 <wsa:RelatesTo RelationshipType="Reply">
 uuid:12345678-1234-5678-123456789012
 </wsa:RelatesTo>
 </env:Header>
 <env:Body>
 <PatientAdmission xmlns="urn:CriticalCarePatient"/>
 ...
 </env:Body>
</env:Envelope>
Message Exchange Patterns

Request / No Response
Request / Response
Request with Optional Response
Notification
Notification with Acknowledgement
Notification with Optional Acknowledgement
Broadcast
Reliable Messaging

Messages are delivered at most once without duplication, it is possible that some messages may not be delivered.

Messages are delivered at least once, some messages may be delivered more than once.

Messages are delivered without duplication. This is the logical “and” of the first two assurances.

Messages are delivered in the same order they were transmitted. This assurance can be combined with any of the previous three assurances.
Policy

WSDL does not express constraints on a Web service
WS-Policy provides such a framework
Policy Assertions
Policy Alternatives
Collections of Policy Alternatives
Metadata

WS-MetadataExchange defines how to query a service to find out its metadata.

Service semantics are not expressed in either WSDL or WS-Policy statements.
Sample Policies

Doctor has to have admitting privileges to hospital

Patient information has to be encrypted when transmitted
Message Security

SSL only secures point-to-point
With more than one recipient or transport layer, you need end-to-end security
Message Routing

Authentication service
Bed availability service
information about patient condition
Patient record check service
should not know about patient condition
Securing SOAP Messages

Message signing
 integrity
 non-repudiation
Message encryption
Message authentication
WS-Security
WS-Security Policy
Trust

Security tokens have to come from a trusted source.

WS-Trust defines protocols
- issuing
- requesting
- renewing
- validating
- transmitting
how to establish trust between two parties
Federated Identity

Identities are valid only within a trust domain

WS-Federation
 how trust works between two domains
 based on WS-Trust
 identity, authentication, authorization shared

Single sign on and sign off possible.

Avoid creating identities in both domains
Transactions

WS-Atomic Transaction
classic ACID Transactions
WS-Coordination
compensation model
Summary

SOA is independent of technology
Covered basic principles of SOA
Defined Basic SOA Vocabulary
First look at implementing SOA with Web services