Basics of Windows Workflow Foundation

Michael Stiefel

Reliable Software, Inc.

Introduction
Why did Microsoft create Workflow Foundation?

Workflow Foundation significantly eases the job of building modern business applications. But why do modern business applications require a new approach?
Designing a modern business application requires understanding the entire business process from the customer’s perspective. Traditionally, business applications have focused on automating individual business functions. Unfortunately, individual functions are often optimized to the detriment of the entire business process.

Functions are skills. Skills are often found in departments. Engineering, customer service, and sales are all functions. A business process is the entire flow of functions that satisfies the needs of an external or internal customer.
When you file an insurance claim, you talk to your insurance company representative. Your car is examined for damage, and then a report is sent to the insurance company for evaluation to determine your coverage and whether you are at fault. A check is issued, and then you have the repairs done.

The Insurance Agent, the Claims Adjuster, the Insurance Adjuster, the Accountant, and the Body Shop repair crew all use skills. Each contributes to processing your insurance claim.
A good process is efficient and effective from the customer point of view. Forcing the customer to haggle with the Body Shop over fixing the damages may be efficient for the Claims Adjuster, but it is not effective for the customer. Optimizing some functions in a process can result in a sub-optimal process that maintains the problems you hope to eliminate. You hear this complaint in the business jargon du jour. Business cannot remain in “individual silos”. You need to take a “360° degree view of business”. Data is owned by the organization. This is the approach embodied in Service Oriented Architecture (SOA).

How do you recognize a business process? Whole books have been written about this.
 For our purposes you can recognize a process because it has an effect that the customer recognizes as a finished product or result. You do not have an Insurance Agent product. You do not have a Claims Adjuster product. You do have a result from an insurance claim. You do have a result for a customer request for an insurance quote. Another name for a process is a workflow.

Unfortunately, software developers usually do not understand business processes, and the business analysts who do usually have no clue about software development. Windows Workflow Foundation (WF) is a first step, albeit a significant step, in creating the infrastructure to build these kinds of applications on the Windows platform. It has the elements within it to begin to allow software developers to build software that allows business analysts to use their domain knowledge to build effective and efficient business processes. Any application that needs a process engine on the Windows platform should use Windows Workflow Foundation.
Enterprise workflow solutions are often not appropriate for departmental or decentralized business processes. Often regular business people need to interact with calendar systems, email, word processing, and other functional applications to build workflow solutions. This is especially true of workflow applications that require specialized or professional knowledge, and are better designed when end-users are actively involved in their development.
 Workflow Foundation allows you to build activity-centric applications that are more appropriate for smaller scale applications.
Requirements for Workflow Infrastructure

Given the structure of modern business applications, what kinds of problems does a workflow foundation have to solve?

First, business processes often take days, weeks or months to complete. Since human actions and decisions are part of the process, much of this time is spent waiting for something to occur rather than in constant calculation.

This has several significant implications:

· Workflows often have to wait days, weeks, or months for events to occur, or for other activities to finish.

· Workflows should not consume processor cycles while waiting.

· Workflows must allow for scalability with many multiple instances.

· Workflows and their associated state must survive machine resets.

· Workflows often require asynchronous control flow because they must wait for human decisions, or the results of other business processes
· Workflows often require the use of a compensation model, instead of traditional database transactions.

Second, business analysts need to design their business processes using concepts they understand. In other words they must use domain specific knowledge. The workflow design tool they use might be visual, but it does not have to be. In any case, the design tool must allow the business analyst to change the workflow in response to rapid changes in the business environment. To use the current jargon du jour, the business must be agile.

The implication here is that this designer must be capable of turning the analyst’s design into executable code. You can see the attempt to do this in the application integration space with the BizTalk designer generating BPEL orchestrations.

These requirements for workflow translate into the following requirements for the Windows Workflow infrastructure:

· Workflow programs are reactive; they must be capable of responding to actions and data that are generated by humans or machines. These actions and data may or may not be generated within the workflow.

· To avoid consuming processor cycles while waiting
, and to survive the inevitable machine resets that will occur over the long time workflows take, the state of the workflow must be capable of being saved to a storage medium, and then brought back into memory, and resumed, possibly even on a different machine. This means that the workflow itself must be call stack, thread, process, and machine agnostic. You have to treat a workflow as pure data.

· While a workflow can be created independently of a design tool, any design tool must be capable of creating a workflow that can be translated into an executable.

Windows Workflow Foundation

How does Workflow Foundation relate to the requirements for the workflow infrastructure?
Windows Workflow Foundation (WF) is the workflow infrastructure that satisfies the requirements just outlined. WF supplies a runtime engine and a framework that you use to implement a workflow. You focus on the business logic, rules, and policies of the business process rather than building workflow infrastructure plumbing. Of course, you can customize parts of this infrastructure if you need to.
We will use five examples to illustrate how Windows Workflow Foundation satisfies the requirements we just listed. These examples only use the command line C# compiler. While most of our other examples will use Visual Studio.NET, it is important to understand the fundamental principles independent of the programming tools and design tools used. By doing this you will understand the principles underlying more sophisticated applications instead of just feeling like you are following a recipe.
None of these five examples use the activities that ship with Windows Workflow Foundation. There is nothing special or privileged about these included activities. They use the same technology that you would use to build your own activities. The first two examples introduce the fundamental concepts of WF. The last three show how these concepts are the foundation for building modern business applications.
Don’t feel overwhelmed if you don’t understand everything all at once. We will revisit in more detail later, the principles and classes we introduce here. You could skip over these examples and go directly to the section entitled “Using Visual Studio.NET” and come back here later. I hope you don’t do that because a little patience here will translate into real understanding.
Information on setting up all the examples is found in the installation instructions that accompany the sample programs.

Host, Runtime, and Activity

The three must fundamental concepts in WF are host, runtime, and activity. These are illustrated in the first example which is just about the simplest workflow you can write. Run compile.bat to build the “Workflow and Host” example. Run the program HelloWorkflow.exe. Enter a carriage return to terminate the program. Following tradition, the sample just prints out “Hello world”.
Let us examine the two files that make up this simple workflow.

The HelloActivity.cs file contains the simplest activity you can create. An activity is the means by which a workflow accomplishes some task or action. Later we will examine more complicated activities, but every activity has an Execute method. At the minimum, an activity goes from the Executing state to the Closed state. As we see in the code below, in the Executing state this activity just writes a simple string to the console before entering the Closed state.

using System;

using System.Workflow.ComponentModel;

namespace HelloWorld

{

 public class HelloWorld : Activity

 {

protected override ActivityExecutionStatus
 Execute(ActivityExecutionContext context)

{

Console.WriteLine("Hello, world.");

return ActivityExecutionStatus.Closed;

}

 }

}
But who schedules and runs the activity? The workflow runtime is responsible for scheduling activities and executing them by invoking their Execute method. But the workflow runtime has to be created within an application. This could be a console application, a Windows Form application, a web service, or Sharepoint to name a few possibilities. The application that creates and runs the workflow is known as the workflow host. In these first five examples we shall use a console application as the host. The host.cs file contains the simplest host that one can write. Here is the code:
using System;

using System.Workflow.Runtime;

class Program

{

 static void Main(string[] args)

 {

 WorkflowRuntime workflowRuntime = new WorkflowRuntime();

 workflowRuntime.StartRuntime();

 Type type = typeof(HelloWorld.HelloWorld);

 WorkflowInstance instance =
 workflowRuntime.CreateWorkflow(type);

 instance.Start();

 Console.ReadLine();

 workflowRuntime.StopRuntime();

 }

}
The host starts the workflow runtime by creating an instance of the WorkflowRuntime class and then invoking the StartRuntime method. After that it creates and starts the workflow instance. The workflow is represented as the type that implements the activity. Note that this type is identical to the type of the activity defined in the HelloActivity.cs file.
We use a Console.ReadLine to keep the console application alive while the workflow runs. After you enter a carriage return, the host stops the workflow runtime.

Activities and Workflow

While, in theory, you can write an entire workflow in one activity this would not be very practical. First, the activity would be enormously complex. Second, you would lose the ability to have reusable activities. In other words, if parts of different business processes shared similar functionality you would not be able to reuse that functionality.
Once class of reusable activities is control flow activities. These activities are analogous to the decision points of conventional programming such as if-else or while decisions
. Another class of reusable activities are container activities which are nothing else than activities that are groupings of more than one activity. Often control and container activities can be combined. The branches of an if activity can contain more than one activity.
The “Activities and Workflow” example demonstrates this. Here the Hello activity is the same as in the previous example. The workflow host is essentially unchanged. What is new is the Sequence activity and its associated workflow. The Sequence activity is a container activity where the control flow is to execute the contained activities in sequence one after another.

In this case, however, the Sequence activity cannot transition to the Closed state until all its child activities have been completed. Look at the following fragment from Sequence.cs:
protected override ActivityExecutionStatus
 Execute(ActivityExecutionContext context)

{

if (EnabledActivities.Count == 0)

return ActivityExecutionStatus.Closed;

Activity currentActivity = EnabledActivities[0];

currentActivity.Closed += Resume;

context.ExecuteActivity(currentActivity);

return ActivityExecutionStatus.Executing;

}

The Execute method causes the runtime to schedule for execution its first child activity.
 It then requests to be notified when that activity finishes. Upon return, it remains in the Executing state.
When the first child activity finishes, the Sequence activity is notified. Look at the following code fragment. In the notification, the Sequence activity checks to see if there is another activity to execute. If not, it enters the Closed state. Otherwise it schedules the next activity in sequence for execution and remains in the Executing state. It will be notified when that activity completes.
private void Resume(object sender,
 ActivityExecutionStatusChangedEventArgs args)

{

ActivityExecutionContext context = sender as
 ActivityExecutionContext;

args.Activity.Closed -= Resume;

Activity activity = args.Activity;

ReadOnlyCollection<Activity> enabledActivities =
 EnabledActivities;

int current = enabledActivities.IndexOf(activity);

if (current + 1 == EnabledActivities.Count)

context.CloseActivity();

else

{

Activity currentActivity = EnabledActivities[current + 1];

currentActivity.Closed += Resume;

context.ExecuteActivity(currentActivity);

}

}
So how does the Sequence activity get initialized? Here we introduce the notion of a workflow. We create an activity that inherits from our Sequence class. Look at Workflow.cs. It creates two instances of our HelloWorld activity and initializes the sequence with them.
using System;

using System.Workflow.ComponentModel;

using SequenceActivity;

namespace Workflow1

{

 public class Workflow1 : Sequence

 {

HelloWorld.HelloWorld hello1;

HelloWorld.HelloWorld hello2;

public Workflow1()

{

hello1 = new HelloWorld.HelloWorld();

hello2 = new HelloWorld.HelloWorld();

Activities.Add(hello1);

Activities.Add(hello2);

}

 }

}

This type Workflow1 is the activity that the host invokes:

 Type type = typeof(Workflow1.Workflow1);

 WorkflowInstance instance = WorkflowRuntime.CreateWorkflow(type);

Since Workflow1 composed of several other activities (a sequence with 2 child activities) we can view it as a very simple workflow. If you build and run this workflow you will see that the “Hello, world.” string is printed to the console twice.

A workflow is nothing but a combination of activities. These activities come in three basic flavors: control flow, container, and action.
Reactive Workflow

The previous two examples do not demonstrate the real power of workflow. All we have done so far seems nothing more than a baroque way of writing an application which we know how to do in a much simpler fashion. Now let us apply the concepts we have introduced.
One of the requirements for workflow programs are they must be reactive and respond to actions and data that are generated. This next example demonstrates how an activity can be reactive.

Let us examine the Execute method in the HelloWorld activity in the “Reactive Workflow” example. A queue is set up and the activity waits for data to be sent to this queue. The activity, of course, has to remain in the Executing state while waiting.
protected override ActivityExecutionStatus
 Execute(ActivityExecutionContext context)

{

WorkflowQueuingService qs =
 context.GetService<WorkflowQueuingService>();

WorkflowQueue q = qs.CreateWorkflowQueue("Q", true);

q.QueueItemAvailable += Resume;

return ActivityExecutionStatus.Executing;

}

private void Resume(object sender, QueueEventArgs args)

{

ActivityExecutionContext context = sender as
 ActivityExecutionContext;

WorkflowQueuingService qs =
 context.GetService<WorkflowQueuingService>();

WorkflowQueue q = qs.GetWorkflowQueue("Q");

text = (string)q.Dequeue();

qs.DeleteWorkflowQueue("Q");

Console.WriteLine(text);

context.CloseActivity();

}
When the data arrives, it gets the data from the queue and writes that data as a string to the console. The activity can then enter the Closed state. In this simple case, the host gets a string from the console and puts it on the activities queue:

Console.Write("Enter message: ");

string message = Console.ReadLine();

instance.EnqueueItem("Q", message, null, null);
Run this example and enter some text. You will see that is the message that gets printed to the console. Since a workflow is itself an activity, and is composed of activities, you can easily see how a workflow can be reactive. Any activity can have information sent to its queue.
Why not just wait on an event instead of using a queue? Remember that a workflow can be removed from memory. If the event occurs while the workflow is removed from memory, the event will never be handled. Let us now look at removing and restoring a workflow from memory.

Resumable Activities and Workflow

A workflow can be saved and removed from memory or “passivated” when the instance is idle.
 An idled workflow has no activities ready to run. This can occur because the activities in the workflow are waiting for some data to arrive in its queue. You do this to save the state of a workflow in case the machine crashes, or to give other workflow instances, or other workflows higher priority. The idled workflow is restored when the input it is waiting for arrives. This improves the scalability of whatever is running on that machine. The workflow could even be restored on another machine. The “Resumable Workflow” example demonstrates this.
Our HelloWorld activity is identical to the one in the previous example except for some diagnostic messages. It has a queue upon which it waits to receive the message string. While the activity is waiting for the string to arrive, the workflow idles, and can be passivated to memory.
There are several events associated with the WorkflowRuntime class that helps the host decide when a workflow is idled or finished. The WorkflowCompleted event occurs when the workflow is completed. The WorkflowIdled event occurs when the workflow idles. The WorkflowTerminated event occurs when the workflow ends abnormally.
The workflow runtime uses a persistence service to save and restore the workflow from memory. Workflow Foundation ships with a SQL Server Persistence service implemented in the SqlWorkflowPersistenceService class.
To simulate this we have created two workflow hosts. The first starts up the workflow, and passivates the workflow when it is idle. It then terminates.

static void Main(string[] args)

{

WorkflowRuntime workflowRuntime = new WorkflowRuntime();

string connectionString = "Integrated Security=SSPI; Persist
 Security Info=False;Initial Catalog=WorkflowStore; Data Source=
 localhost";

 workflowRuntime.AddService(new
 SqlWorkflowPersistenceService(connectionString));

workflowRuntime.StartRuntime();

 …
 workflowRuntime.WorkflowIdled += new
 EventHandler<WorkflowEventArgs>(workflowRuntime_WorkflowIdled);

Type type = typeof(HelloWorld.HelloWorld);

 …
 }

 …
static private void workflowRuntime_WorkflowIdled(object sender,
 WorkflowEventArgs e)

{

Console.WriteLine("Workflow {0} idled.",
 instance.InstanceId.ToString());

 instance.TryUnload();

waitHandle.Set();
}
Running the first host results in the output similar to this (your instance id will be different):
Execute finished
Workflow 194523d1-2470-4718-9f58-cf2b7fd27323 idled.

Based on the diagnostic messages we see that the Execute method of the activity ran and set up the queue. Since the activity remains in the Executing state with nothing else happening in the workflow, the workflow idles, and can be persisted to SQL Server and removed from memory. If we looked at the appropriate SQL Server database, we would find information associated with the instance id of the workflow.
The second host then restores the workflow, gets the input from the user and sends it to the waiting activity. The activity can then print the message out, enter the Closed state, and the workflow can then terminate. Note that the host uses the GetWorkflow method instead of the CreateWorkflow method to restart the workflow. Of course it needs the instance id of the workflow that has to be restarted. Here is the code in the second host:
Console.Write("Enter message: ");

string message = Console.ReadLine();

Console.Write("Enter workflow id:");

string id = Console.ReadLine();

Guid instanceId = new Guid(id.Trim());

WorkflowInstance instance = workflowRuntime.GetWorkflow (instanceId);

instance.EnqueueItem ("Q", message, null, null);
Running the second host results in output similar to this:
Enter message: hi

Enter workflow id: 194523d1-2470-4718-9f58-cf2b7fd27323

Execute resumed.

hi

Workflow Completed.

You will have to enter the actual workflow id written out by your first host. Based on the diagnostic messages we see that the Resume method of the activity ran and got the message off the queue. The activity then printed out the message and entered the Closed state. At that point the workflow can complete.
How did the runtime know that the workflow was completed? You can set up a handler for the WorkflowCompleted event which in this case just writes out to the console that the workflow has ended.

workflowRuntime.WorkflowCompleted += new
 EventHandler<WorkflowCompletedEventArgs>
 (WorkflowRuntime_WorkflowCompleted);

…

static void WorkflowRuntime_WorkflowCompleted(object sender,
 WorkflowCompletedEventArgs e)

{

 Console.WriteLine("Workflow Completed.");

 waitHandle.Set();

}

Note that this workflow is restarted in a different process (and therefore a different thread and call stack) from the one that the workflow was initialized. The WF infrastructure is treating the workflow as pure data.
Workflow as Data

Our final example shows how we can build workflows as data. The “Workflow as Data” example is the most complicated of the ones we have examined so far. Running this workflow yields this simple output:
Hello, Unbound Workflow

Hello, Bound Workflow

Here our workflow is represented as pure data in the file test.xoml:

<me2:Sequence x:Name="Outer"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/workflow"

 xmlns:me1="clr-namespace:HelloWorld;Assembly=test"

 xmlns:me2="clr-namespace:SequenceActivity;Assembly=test">

<me1:HelloWorld x:Name="First" Text="Hello, Unbound Workflow" />

<me1:HelloWorld x:Name="Second" Text="{ActivityBind
 Outer,Path=Message}" />

</me2:Sequence>

Some of you may recognize this as XAML which is used in the Windows Presentation Foundation (WPF). XAML is an XML object initialization language. Here XAML is used to initalize the values associated with the activities in the workflow. In Windows Workflow XAML files have the extension “xoml” to distinguish them from the XAML files used in WPF.
This workflow consists of our Sequence activity which contains two instances of our HelloWorld activity. The XAML defines the code namespaces and the assemblies where we will find these activities. In our case they will be found in the test assembly since we have built them into the executable (test.exe) of our example.
Let us see how the host uses XAML to initialize the workflow.

WorkflowRuntime workflowRuntime = new WorkflowRuntime();

TypeProvider typeProvider = new TypeProvider(workflowRuntime);

typeProvider.AddAssembly(Assembly.GetExecutingAssembly());

workflowRuntime.AddService(typeProvider);

workflowRuntime.StartRuntime();

XmlReader reader = XmlReader.Create("test.xoml");

Dictionary<string, object> parameters = new Dictionary<string,object>();

parameters.Add("Message", "Hello, Bound Workflow");

WorkflowInstance instance = workflowRuntime.CreateWorkflow(reader, null,
 parameters);

instance.Start();

Console.ReadLine();

workflowRuntime.StopRuntime();

The host has to instruct the runtime where to find the assemblies that the XAML file says is the location of the activities. It uses the TypeProvider class to do this. The host then creates an XmlReader instance associated with the XAML file. Using XAML this way is called XAML activation.
 Since we are passing a parameter into the workflow, we do this with a Dictionary class instance. We will talk more about passing parameters to a workflow in the next section. The name of the object we pass in corresponds to a property on the Sequence class:

public string Message

{

get { return message;}

set { message = value;}

}

Other than this property, the Sequence activity is unchanged from how it appeared in previous examples.
The HelloWorld activity has a few changes to it. The Execute method looks familiar. It just extracts a value from a property and uses it to write out a string to the console. It then enters the Closed state. However the property it uses looks a little strange.
public class HelloWorld : Activity

{

public static readonly DependencyProperty TextProperty =

 DependencyProperty.Register("Text", typeof(string),

 typeof(HelloWorld));

protected override ActivityExecutionStatus
 Execute(ActivityExecutionContext context)

{

Console.WriteLine(Text);

return ActivityExecutionStatus.Closed;

}

 public string Text

 {

get { return (string)GetValue(TextProperty); }

set { SetValue(TextProperty, value); }

 }

}
The HelloWorld activity is using a Dependency Property. Why not use a regular property? There are several reasons for using Dependency Properties and we will discuss them in greater detail later. In this case we are using it to implement Activity Databinding.
Look and see how the Text property on the HelloWorld activity is initialized in the XAML:

<me2:Sequence x:Name="Outer" … />

<me1:HelloWorld x:Name="First" Text="Hello, Unbound Workflow" />

<me1:HelloWorld x:Name="Second" Text="{ActivityBind
 Outer,Path=Message}" />

The first HelloWorld instance’s Text property is initialized directly in the XAML and that corresponds to the first string the workflow writes to the console. The second HelloWorld instance’s Text property is bound to whatever value is associated with the Sequence activity’s Message property. The Sequence activity is named “Outer” in the XAML.
Activity Databinding allows a databinding expression to be associated with the property. This expression is evaluated at runtime to get the actual value of the property. Otherwise there would be no way to assign a value to a property that was not known in advance.

Activity Databinding is used extensively in Windows Workflow. Note that use of activity databinding is not mandatory; the first instance assigns its property value statically.

Designers and XAML

XAML allows business processes to be represented as XML instead of a type associated with a particular programming language. XAML is potentially a proprietary standard similar to Adobe Macromedia’s Multimedia eXtensible Markup Language (MXML). MXML is a user interface markup language.
 XAML can be used to represent a business process in the same way.
A XAML based workflow designer could use a domain specific language (DSL) associated with a particular business activity. This DSL would make it a lot easier for business analysts to manipulate and design a workflow. Of course, they would probably use custom business activities in much the same way as the simple activities were used in the last example. These activities can be used independently of the designer. As the last example also demonstrated if the designer ultimately emits a XAML description, the designer can create an executable
.

Visual Studio.NET has a workflow designer than can, but does require using, XAML. We will use this designer extensively in our examples. Nonetheless, as this last example makes clear, from the perspective of the workflow infrastructure, there is nothing special about this designer compared to any other. The Visual Studio.NET’s designer, however, is a programmer’s tool, not a tool for a business analyst.
Summary
We listed three requirements that Windows Workflow Foundation had to meet in order to be the basis for building modern business applications. We have demonstrated all three:

We have demonstrated that workflow programs can be reactive since activities can wait on queue notifications to receive input. If the workflow has been passivated, the workflow can be brought back into memory.

We have demonstrated that passivation allows workflows to be saved to a storage medium so that they do not consume processor cycles if nothing is happening in the workflow. As we have seen this restoration does not have to happen in the same process (or machine) where the workflow was created. Although we have not shown it, under many circumstances a workflow can be passivated even when it is not idle.
We have demonstrated that Workflow Foundation’s use of XAML allows domain specific design tools to be built. With such a tool business analysts that understand business processes will be able to use business specific activities to build workflow programs.
In the next section we will be using Visual Studio.NET’s workflow designer and activities that ship with Windows Workflow Foundation. As this section demonstrates there is nothing special about this designer or those activities. Certainly they are useful for you to get started; in fact they might be enough for you to start building your own workflows. Most probably, you will have to build your own custom activities and we will show you how to do that in a later section. What is important to understand is that the activities that ship in the box are built on WF, and there is nothing special about them.
Developing Simple Workflows with Visual Studio.NET
The simple applications we will build in this section have a threefold purpose. The first is to demonstrate how to use Visual Studio.NET to build workflow applications. The second is to demonstrate in a more concrete fashion, the principles behind WF. The third is to demonstrate how to use some of the activities that ship with WF. The finished examples are included with the sample programs.
As we go along, we will introduce the various tools that make up the Visual Studio.NET workflow environment.

As we explained in the last section, workflows are made up of activities. Activities are the fundamental element of Windows Workflow. Activities provide control flow or action. The workflow itself is nothing more than a type of activity. Workflows run inside of an application, or host.

Sequential Workflow Example
Sequential workflows are perhaps the most intuitive type of workflow. A sequential workflow has a natural flow of operations that corresponds to what you would perceive to be the steps to accomplish a given task. While the flows can be asynchronous or synchronous, it is the workflow itself that dictates what choice or decision comes next. This workflow pattern is so common that an activity that models it ships with WF.
To illustrate a sequential workflow we will build a simple Loan Decision program. Given a loan amount and an interest rate, the workflow calculates whether the loan is approved or not. We will create this application in two steps. The first step has the workflow with a hard coded loan amount and interest rate. The host program will be a console application. The next step augments the host so they we can pass in a loan amount and interest rate, and get the result of the approval process.

Step 1

In Visual Studio.NET, create a new project called LoanDecision. As shown in Figure 1, under Project types select Workflow, and pick the Sequential Workflow Console application template.
[image: image1.png]
Figure 1 Creating a new Workflow project
After hitting the OK button on the New Project dialog the new workflow project will be created. In the Solution Explorer, rename the file Workflow1.cs to Decision.cs. Answer yes to the dialog that asks you to rename all the references.

We now have the skeleton of a sequential workflow.
The workflow code that was created by the wizard is contained in 3 files: Program.cs, Decision.cs, and Decision.designer.cs. The first file, Program.cs, contains the console host.
The workflow is represented by the Decision type defined in the Decision.cs and Decision.designer.cs files. Notice how a partial class is used to create two files. Code we will add will go in the Decision.cs file. Wizard and designer generated code will go in the Decision.designer.cs file.

As we discussed in the previous section and illustrated in the following code fragment, the host starts up the workflow runtime, and sets up handlers for t he WorkflowCompleted and WorkflowTerminated events. It then creates an instance of the workflow using the Decision type and starts the instance. An AutoResetEvent instance is used to keep the console application alive while the workflow runs.
We will use this host unmodified in the first part of this example.
WorkflowRuntime workflowRuntime = new WorkflowRuntime())

workflowRuntime.WorkflowCompleted += delegate(object sender,
 WorkflowCompletedEventArgs e) {waitHandle.Set();};

workflowRuntime.WorkflowTerminated += delegate(object sender,
 WorkflowTerminatedEventArgs e)

{

 Console.WriteLine(e.Exception.Message);

 waitHandle.Set();

};

WorkflowInstance instance =
 workflowRuntime.CreateWorkflow(typeof(LoanDecision.Decision));

instance.Start();
waitHandle.WaitOne;
Notice how the Decision class inherits from the SequentialWorkflowActivity. As we saw in the last section, this allows us add activities to the Decision class and have those activities treated as they were in a sequential workflow. Let us do this now by using the Workflow designer add-in for Visual Studio.NET. This designer is not part of the Workflow Foundation. It is just a tool that allows you to manipulate the workflow visually much as the Windows Forms designer does for creating Windows forms.
Continuing from where we left off before, on the File Menu, select View Toolbox and Visual Studio should look as it does in Figure 2.

[image: image2.png]
Figure 2 Displaying the Windows Workflow Designer’s Toolbox
Drag and drop an IfElse activity from the toolbox on to the design surface as shown in Figure 3. The red exclamation point indicates a property that has to be set.
[image: image3.png]
Figure 3 An IfElse Activity added to the Workflow
Select the file Decision.cs in the Solution Explorer, right mouse click and select the View Code menu item. Add two double member variables interestRate and loanAmount. In this first step we are hard coding their values.
namespace LoanDecision

{

public sealed partial class Decision: SequentialWorkflowActivity

{

 double interestRate = 7;

 double loanAmount = 300000;

public Decision()

{

InitializeComponent();

}

}

}

Select the Decision.cs[Design] tab or Select Decision.cs and select View Designer from the context menu. Select the IfElse activity. Right mouse click and select Properties from the context menu. In the Properties Explorer change the name of the activity to CategorizeLoan.

Select the left half of the IfElse activity CategorizeLoan. Change the name of the branch to LargeLoanDecision. Each branch of an IfElse activity has an associated condition. As in a programming language a condition is a statement that evaluates to either true or false. This condition fulfills the same function as the condition associated with an If statement in code. If the boolean condition evaluates to true, the activities in the left branch of the IfElse activity execute, otherwise, the activities in the right branch execute. After we set the condition we will add activities to these branches.
If you select the Condition property drop down you see two possible conditions: Code Condition and Declarative Rule Condition. Code Conditions use delegates to express the conditional logic. Declarative Rule Conditions express the conditional logic as a set of rules. We will discuss Declarative Rule Conditions later. For now, pick Code Condition in the drop down. If you expand the Condition property you will see a place to enter the name of the delegate. Enter EvaluateLargeLoan. Figure 4 shows what Visual Studio.NET should look like. Enter a carriage return and the designer will create a stub for the delegate and open the Decision.cs file. You can also create the delegate and then assign its name to the property later.
[image: image4.png]
Figure 4 Adding a Code Condition for the IfElse Activity
The second argument of the delegate is a ConditionalEventArgs that has a result member. To return the appropriate boolean value for the condition, set this member to true or false. Since we consider any loan over $250,000 to be a large loan, we use the following code for the delegate:
private void EvaluateLargeLoan(object sender, ConditionalEventArgs e)

{

 Console.WriteLine("{0} loan requested at {1} percent.", loanAmount,
 interestRate);

 if (loanAmount > 250000)

 e.Result = true;

 else

 e.Result = false;

}
Select the right half of the CategorizeLoan IfElse activity and rename it to SmallLoanDecision. Drag and drop a Code Activity to the left branch (see Figure 5).
[image: image5.png]
Figure 5 Code Activity added to the LargeLoanDecision branch of the CategorizeLoan Activity

Rename this Code Activity to ProcessLargeLoan. Enter LargeLoan in the ExecuteCode property and enter a carriage return. In the delegate code associated with this property enter the following code:

private void LargeLoan(object sender, EventArgs e)

{

 double payment = (loanAmount * interestRate * .01 / 12);

 if (payment > 1500)

 Console.WriteLine(" Loan Denied.");

 else

 Console.WriteLine(" Loan Approved.");

}
If the monthly payment is over $1500 we deny the loan.

Return to the designer. Drag and drop a Code Activity to Categorize Loan’s right branch. Rename it ProcessSmallLoan. Enter SmallLoan for its ExecuteCode property and enter a carriage return. Enter the following code in the delegate:
 Console.WriteLine(" Loan Approved.");

All small loans are approved.
Finally add a Code Activity after the CategorizeLoan activity. Rename it Done. Add a Finished delegate to the Execute Code property. It has one line of code:

 Console.WriteLine("Processing Finished.");
The finished workflow is shown in Figure 6.
[image: image6.png]
Figure 6 Finished Workflow

If you build and run the application, you will get the following output:

300000 loan requested at 7 percent.

 Loan Denied.

Processing Finished.

Press any key to continue . . .

So what have we accomplished with our first workflow? We have created a simple console host application to run our workflow. The host starts and sets up the workflow runtime. It then creates a workflow instance and begins that instance. The workflow itself consists of five activities. One activity is an if/else control flow activity that has a condition that determines which of two branches executes. There are two code activities that provide the executable code. The fourth activity is the final code activity. The fifth activity is the sequence activity that is the container for the other activities.

Activities can either be container activities or atomic activities. The Decision sequence activity that encloses the entire workflow is a container activity. It contains the CategorizeLoan IfElse and the Done Code activities. The code activities are atomic activities since they contain no other activities. The branches of the CategorizeLoan IfElse activity are actually container activities since you can actually put more than one activity in the branches.
Activities can also be action activities or control flow activities. The code activities are examples of activities that perform some action. The Decision sequence activity and the CategorizeLoan IfElse activity are examples of control flow activities since they provide control logic. The IfElse activity is a decision with two (or more) branches. The Sequence activity simple executes its contained activities in a sequential order. The workflow itself is nothing more than an activity.
We have used a designer to make our life easier. But all the designer has done is to generate code that we could have typed in a code file ourselves. The workflow runtime is represented by the WorkflowRuntime class. The Decision sequence activity class inherited its sequence control flow ability from the SequentialWorkflowActivity class. The code activities are instances of the CodeActivity class and the IfElse activity is an instance of the IfElseBranchActivity class. These activities are added to the Activities collection associated with the Decision class. The order in which they are added is the order in which they are run. The code condition for the if/else branch is an instance of a CodeCondition class. The code associated with the code activities are added through delegate properties.
Step 2
In the next step we will modify the workflow and the host to allow us to pass in different values to the Loan Decision workflow.
First let us modify the workflow. Select the Done activity in the workflow. Right mouse click and select Delete from the context menu. Remove the initial values from the interestRate and loanAmount fields. Add a boolean field called approved. Remove all the Console.WriteLine code lines. Replace them with the appropriate values for the approved field. When done the code should look like this:
double interestRate;

double loanAmount;

bool approved = false;

private void EvaluateLargeLoan(object sender, ConditionalEventArgs e)

{

 if (loanAmount > 250000)

 e.Result = true;

 else

 e.Result = false;

}

private void LargeLoan(object sender, EventArgs e)

{

 double payment = (loanAmount * interestRate * .01 / 12);

 if (payment > 1500)

 approved = false;

 else

 approved = true;

}
private void SmallLoan(object sender, EventArgs e)

{

 approved = true;

}
Add three public properties called Approved, InterestRate and LoanAmount for these fields. These properties are how information is passed between the host and the workflow. The Approved property, which has a getter, is the output of the workflow. The other two properties have setters only. They correspond to the input for the workflow. The code is as follows:
public bool Approved

{

 get { return approved; }

}

public double InterestRate

{

 set { interestRate = value; }

}

public double LoanAmount

{

 set { loanAmount = value; }

}

Now we will modify the host. The idea here is to create a new instance of the workflow to correspond to each set of values for interest rate and loan amount read from the console. A Dictionary instance is used to pass this information to the workflow. Note that the keys for each element correspond to the names of the input properties of the Decision class. Each loop creates a separate workflow instance. Entering a -1 for the loan amount causes the loop to end.
double loanAmount;

double interestRate;

string input;

for (; ;)

{

 Console.WriteLine("Enter loan information:");

 Console.Write("Loan Amount: ");

 input = Console.ReadLine();

 loanAmount = Double.Parse(input);

 if (loanAmount == -1)

 break;

 Console.Write("Interest Rate: ");

 input = Console.ReadLine();

 interestRate = Double.Parse(input);

 Console.WriteLine("${0} loan requested at {1} percent.", loanAmount,
 interestRate);

 Dictionary<string, object> parameters = new Dictionary<string,
 object>();

 parameters.Add("InterestRate", interestRate);

 parameters.Add("LoanAmount", loanAmount);

 WorkflowInstance instance = workflowRuntime.CreateWorkflow(type,
 parameters);

 Console.WriteLine(" Workflow instance {0} created.",
 instance.InstanceId);
 instance.Start();
}
Next modify the handler for the WorkflowCompleted event to get the result of the loan request.
workflowRuntime.WorkflowCompleted += delegate(object sender,
 WorkflowCompletedEventArgs e)

{

 bool result = (bool)e.OutputParameters["Approved"];

 if (result == true)

 Console.WriteLine(" Loan Approved.");

 else

 Console.WriteLine(" Loan Denied");

};

Again, the name of the output parameter we are looking for in the Dictionary collection corresponds to the name of the output property in the Decision class.
To make sure that the output written to the console is coordinated, we use an AutoResetEvent instance to ensure that a workflow instance is finished before a new one is started. The workflow runtime can manage multiple instances of a workflow running at once. This is just to make the output friendlier for human readers.
If we run the application, it could look something like this:

Enter loan information:

Loan Amount: 100000

Interest Rate: 9

$100000 loan requested at 9 percent.

 Workflow instance a4a86ed6-116e-4ecc-ba81-e3e03441974a created.

 Loan Approved.

Enter loan information:

Loan Amount: 500000

Interest Rate: 9

$500000 loan requested at 9 percent.

 Workflow instance a7161e7f-d405-414a-9f44-00c045d13359 created.

 Loan Denied

Enter loan information:

Loan Amount: 500000

Interest Rate: 2

$500000 loan requested at 2 percent.

 Workflow instance 5ef2844f-2962-49c7-923d-18d9a3d16586 created.

 Loan Approved.

Enter loan information:

Loan Amount: -1

Press any key to continue . . .
Note that each workflow instance is assigned a unique Guid. There is an overload of the CreateWorkflow method that allows you to assign your own id to a workflow instance.

We now have a workflow that has a cleaner separation between user interface and workflow. We have also demonstrated how to pass information between a host and a workflow. The distinction between workflow and an instance of a workflow should also be now apparent.

Debugging Workflows

The workflow designer is integrated with the Visual Studio.NET debugger. You can select any activity in the workflow and set a breakpoint (see Figure 7). When the program runs, the debugger will stop (see Figure 8) at that activity. You can then step in and the debugger will then execute the code associated with the activity (Figure 9).
[image: image7.png]
Figure 7 A breakpoint set on an activity.
[image: image8.png]
Figure 8 Execution stopped at the activity breakpoint.
[image: image9.png]
Figure 9 After stepping in at the activity breakpoint.
Tracing Workflows
Tracing allows diagnostic information to be written to a file or other output mechanism while the program is still running. Complex systems cannot be put in the debugger to diagnose problems so you need information about the state of the application when a problem occurs. Often, it is impossible to recreate problem scenarios that customers encounter without information about the exact state of the application. Tracing allows you obtain this kind of information.

The Tracing Workflows example uses the LoanDecision application to demonstrate workflow tracing. It configures the application to use the System.Diagnostics facilities to write workflow trace output to a file
. The application configuration file has a section that specifies the switches to be used.
<?xml version="1.0" encoding="utf-8”?>
<configuration>

 <system.diagnostics>

 <switches>

 <add name ="System.Workflow.Runtime" value ="Critical" />

 <add name ="System.Workflow.Runtime.Hosting" value ="Information" />

 <add name ="System.Workflow LogToFile" value="1" />

 </switches>

 </system.diagnostics>

</configuration>

Here we wish to trace messages produced by the System.Workflow.Runtime and the System.Workflow.Runtime.Hosting namespaces. You can then associate what level of information you want by assigning one of the standard diagnostics switch values. Setting the LogToFile value to 1 will save t he trace out to a file WorkflowTrace.Log in the directory where the application executes. Here is some sample data from the trace file from this application:
System.Workflow.Runtime.Hosting Information: 0 : WorkflowRuntime:
 Created WorkflowRuntime 2da288ff-3485-4c63-a1c9-98dc7f4565aa

System.Workflow.Runtime.Hosting Information: 0 : WorkflowRuntime:
 Starting WorkflowRuntime 2da288ff-3485-4c63-a1c9-98dc7f4565aa

...
System.Workflow.Runtime.Hosting Information: 0 : Scheduling work for
 instance d68078e4-e48f-40bd-b614-e37d44a3dfaa

System.Workflow.Runtime.Hosting Information: 0 : Running workflow
 d68078e4-e48f-40bd-b614-e37d44a3dfaa

System.Workflow.Runtime.Hosting Information: 0 :
 WorkflowRuntime:ScheduleCompleted event raised for instance Id
 d68078e4-e48f-40bd-b614-e37d44a3dfaa

...
You can experiment by changing the values to Critical, Information, or Verbose to see what information is traced for each setting.
Communicating Outside the Workflow
In the Loan Decision example, the workflow did not have to call external services or react to external events. All the data needed by the workflow was present at the outset. Most workflows are not that simple. Workflows are reactive; they must wait on data and decisions that arrive in the course of the workflow. The CallExternalMethod and the EventDriven examples demonstrate how to implement these scenarios.
Call External Method Activity

The CallExternalMethod activity allows you to invoke a service that is defined outside the workflow. The activity executes a method defined on an interface. The actual service that implements this interface is associated with the workflow runtime by the workflow host. This service is called an External Data Exchange Service.
In this example we have defined an interface IGatherInformation that has one method GatherInfo that will get information about a particular loan. The ExternalDataExchange attributes indicates that this interface is part of an External Data Exchange Service. An External Data Exchange Service allows you to call an externally defined method on that service, and as we will see in the next example, receive events generated by that service.
[ExternalDataExchange]

public interface IGatherInformation

{

 void GatherInfo(string person, double amount, double interestRate);

}

It also provides a class, GatherInformation that implements this interface and is the actual service. This class has to be serializable because, as discussed in the previous section, a workflow can be passivated at almost any time.
[Serializable]

public class GatherInformation : IGatherInformation

{

 string companyName;

 public GatherInformation(string companyName)

 {

 this.companyName = companyName;

 }

 public void GatherInfo(string person, double loanAmount,
 double interestRate)

 {

 Console.WriteLine("Updating the database.");
 }

}

The host then associates this service with the workflow runtime.
ExternalDataExchangeService service = new ExternalDataExchangeService();

GatherInformation gatherInfo = new GatherInformation("Acme Financial");

workflowRuntime.AddService(service);

service.AddService(gatherInfo);

This workflow has three member variables that correspond to the parameters to the GatherInfo method. Their values are hard coded for simplicity.
 public string person = "John Smith";

 public double amount = 50000;

 public double interestRate = 5;

Figure 10 shows the designer for the CallExternalMethod example. A single CallExternalMethod activity has been added to the workflow.

[image: image10.png]
Figure 10 GatherInformation Workflow
You can see that the IGatherInformation interface has been associated with this activity as has the GatherInfo method. To make this association you can select the Interface Type property and click the button in the property field. This brings up the following window.
[image: image11.png]
Figure 11 Select Interface for Call External Method activity
This dialog lists all the interfaces that have the ExternalDataExchange attribute. You can then pick the value you wish. At that point, a drop down appears in the Method Name property. You can pick the method you wish to invoke. The Call External Method activity will then use whatever External Data Exchange Service that implements this interface. As noted earlier, it is the host that determines that actual implementation used.
[image: image12.png]
Figure 12 Associating a class member with an activity property
When you choose the method that you wish to invoke, activity properties appear in the property window that correspond to the parameters of the method. As discussed in the previous section, activity databinding allows a runtime evaluation to get the actual value for a property. This allows us to associate a run-time value of a member field with the property as opposed to a compile-time defined value. Selecting one of these fields allows you to bring up the dialog shown in Figure 12. The MethodInvoking property allows you to execute some code before the service method is invoked.

CallExternalMethod is not the only way to access data outside of a workflow. You could make a call to a Web service.
 You could write your own custom activity that matches your business process.
Event Driven Activity
The previous example assumed that the information gathering process would not take a long time. You can use the Event Driven Activity to catch notifications that the information was available.

The EventDriven example just adds a HandleExternalEvent activity to the previous workflow (Figure 13).

[image: image13.png]
Figure 13 Workflow with HandleExternalEvent activity

In order to make use of this activity we have modified our IGatherInformation interface to include an event.
[Serializable]

public class MessageEventArgs : ExternalDataEventArgs

{

 private string information;

 public MessageEventArgs(Guid instanceId, string information)

 : base(instanceId)

 {

 this.information = information;

 }

 public string Information

 {

 get { return information; }

 }

}

[ExternalDataExchange]

public interface IGatherInformation

{

 event EventHandler<MessageEventArgs> SendInformation;

 void GatherInfo(Guid instanceId, string person, double amount,
 double interestRate);

}
This event is going to be invoked by the GatherInfo method invoked by the GatherInfo activity when it has finished its information gathering process. The information it has found will be passed in the MessageEventArgs instance that accompanies the event.
public void GatherInfo(Guid instanceId, string person, double
 loanAmount, double interestRate)

{

 string message = String.Format("Information about {0}'s loan for
 ${1} at {2}%", person, loanAmount, interestRate);

 MessageEventArgs arg = new MessageEventArgs(instanceId, message);

 ThreadPool.QueueUserWorkItem(new WaitCallback(RaiseSendInformation),
 arg);

}

private void RaiseSendInformation(object o)

{

 if (SendInformation != null)

 {

 MessageEventArgs arg = o as MessageEventArgs;

 SendInformation(null, arg);

 }

}
The event is launched on a different thread from the workflow to avoid a deadlock condition. Note that you pass the workflow instance identifier to the MessageEventArgs constructor. This information is used by the runtime to routine the message to the correct instance of the workflow. The Invoked property of the HandleExternalEvent activity specifies the method that is called when the event arrives.
In this example we have demonstrated how to break up the components for maximum reusability and minimal dependencies. The IGatherInformation interface is defined in a separate assembly from the implementation of the service class. The workflow and host are in separate assemblies. The workflow only has a dependency on the interface not the service implementation.
If you need to listen for one of several possible events at one time you can use the Listen and the EventDriven activities with the HandleExternalEvent activity.
At the risk of sounding redundant, let us note that we have used the Visual Studio.NET designer to make our lives easier. All it did was generate some code we could have written ourselves. Now let us use our understanding of interacting with events to build a state machine workflow example.

� � HYPERLINK "http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf" ��OASIS Reference Model for Service Oriented Architecture�

� For example, Sharp, Alec and Patrick McDermott, Workflow modeling: tools for process improvement and application development, Artech House, c2001.

� Hill, Yates, Jones and Kogan, “Beyond predictable workflows: Enhancing productivity in artful business processes”, IBM Systems Journal Vol. 45 #4, Oct-Dec 2006, pp 663-682

� Imagine many threads waiting for input and being either blocked or busy waiting. This is not the way to build a scalable system.

� You are not restricted to programming language type control flows.

� As will be explained later, the child activity is only scheduled for execution. It may or may not execute right away.

� The runtime can also try to passivate the workflow when it is running.

� Using XAML this way does not create reusable code. You can also compile XAML files into a workflow type using the workflow compiler. XAML compilation allows you to define activities as well as workflows using XAML. We will discuss this in more detail later. Here we have defined the workflow as markup.

� � HYPERLINK "http://en.wikipedia.org/wiki/MXML" ��Wikopedia entry on MXML�

� Another way to implement a DSL would be to write a custom WorkflowLoaderService that knows how to create a workflow from a native DSL format.

� Any good introduction to Microsoft .NET should explain the System.Diagnostics classes.

� The Web service activities built into WF are one way to do this. Windows Communication Foundation is another. External Data Exchange Services are implemented using the workflow queuing mechanism that we discussed earlier. The host could receive information, and interact directly with queues defined on custom activities. These are only some of the possibilities.

