
C H A P T E R 2

.NET Fundamentals

What kind of problems is .NET designed to solve? .NET solves problems that have
plagued programmers in the past. .NET helps programmers develop the applications of the
future. This chapter is designed to present an overview of Microsoft .NET by looking at a
simple program rather than talking in vague generalities. While we will start discussing Mi-
crosoft .NET in detail in Chapter 6, this chapter will enable you to get a feel for the big
picture right away.

PROBLEMS OF WINDOWS DEVELOPMENT

Imagine a symphony orchestra where the violins and the percussion sections had different
versions of the score. It would require a heroic effort to play the simplest musical composi-
tion. This is the life of the Windows developer. Do I use MFC? Visual Basic or C++?
ODBC or OLEDB? COM interface or C style API? Even within COM: do I use IDispatch,
dual, or pure vtable interfaces? Where does the Internet fit into all of this? Either the design
had to be contorted by the implementation technologies that the developers understood, or
the developers had to learn yet another technological approach that was bound to change in
about two years.

Deployment of applications can be a chore. Critical entries have to be made in a Reg-
istry that is fragile and difficult to backup. There is no good versioning strategy for compo-
nents. New releases can break existing programs often with no information about what went
wrong. Given the problems with the Registry, other technologies used other configuration
stores such as a metabase or SQL Server.

Security in Win32 is another problem. It is difficult to understand and difficult to use.
Many developers ignored it. Developers who needed to apply security often did the best
they could with a difficult programming model. The rise of Internet-based security threats
transforms a bad situation into a potential nightmare.

1

2

Despite Microsoft’s efforts to make development easier problems remained. Many
system services had to be written from scratch, essentially providing the plumbing code that
had nothing to do with your business logic. MTS/COM+ was a giant step in the direction of
providing higher level services, but it required yet another development paradigm. COM
made real component programming possible. Nonetheless, you either did it simply, but in-
flexibly in Visual Basic, or powerfully, but with great difficulty in C++, because of all the
repetitive plumbing code you had to write in C++.

APPLICATIONS OF THE FUTURE

Even if .NET fixed all the problems of the past, it would not be enough. One of the un-
changing facts of programming life is that the boundaries of customer demand are always
being expanded.

The growth of the Internet has made it imperative that applications work seamlessly
across network connections. Components have to be able to expose their functionality to
other machines. Programmers do not want to write the underlying plumbing code, they want
to solve their customers’ problems.

.NET OVERVIEW

The Magic of Metadata

To solve all these problems NET must provide an underlying set of services that is available
to all languages at all times. It also has to understand enough about an application to be able
to provide these services.

Serialization provides a simple example. Every programmer at some time or another
has to write code to save data. Why should every programmer have to reinvent the wheel of
how to persist nested objects and complicated data structures? Why should every program-
mer have to figure out how to do this for a variety of data stores? .NET can do this for the
programmer. Programmers can also decide to do it themselves if required.

To see how this is done, look at the Serialize sample associated with this chapter. For
the moment ignore the programming details of C# which will be covered in the next three
chapters, and focus on the concepts.

[Serializable] class Customer
{
 public string name;
 public long id;
}

 3

class Test
{
 static void Main(string[] args)
 {
 ArrayList list = new ArrayList();

 Customer cust = new Customer();
 cust.name = "Charles Darwin";
 cust.id = 10;
 list.Add(cust);

 cust = new Customer();
 cust.name = "Isaac Newton";
 cust.id = 20;
 list.Add(cust);

 foreach (Customer x in list)
 Console.WriteLine(x.name + ": " + x.id);

 Console.WriteLine("Saving Customer List");
 FileStream s = new FileStream("cust.txt",
 FileMode.Create);
 SoapFormatter f = new SoapFormatter();
 f.Serialize(s, list);
 s.Close();

 Console.WriteLine("Restoring to New List");
 s = new FileStream("cust.txt", FileMode.Open);
 f = new SoapFormatter();
 ArrayList list2 = (ArrayList)f.Deserialize(s);
 s.Close();

 foreach (Customer y in list2)
 Console.WriteLine(y.name + ": " + y.id);
 }
}

We have defined a Customer class with two fields: a name and an id. The program
first creates an instance of a collection class that will be used to hold instances of the Cus-
tomer class. We add two Customer objects to the collection and then print out the contents
of the collection. The collection is then saved to disk. It is restored to a new collection in-
stance and printed out. The results printed out will be identical to those printed out before
the collection was saved.1

We wrote no code to indicate how the fields of the customer object are saved or re-
stored. We did have to specify the format (SOAP) and create the medium to which the data

1 The sample installation should have already built an instance that you can run. If not, double-click on the Visual
Studio.NET solution file that has the .sln suffix. When Visual Studio comes up, hit Control-F5 to build and run the
sample.

4

was saved. The .NET Framework classes are partitioned so that where you load/save, the
format you use to load/save, and how you load/save can be chosen independently. This kind
of partitioning exists throughout the .NET Framework.

The Customer class was annotated with the Serializable attribute in the same way
the public attribute annotates the name field. If do not want your objects to be serializable,
do not apply the attribute to your class. If an attempt is then made to save your object, an
exception will be thrown and the program will fail.2

Attribute-based programming is used extensively throughout .NET to describe how
the Framework should treat code and data. With attributes you do not have to write any
code; the Framework takes the appropriate action based on the attribute. Security can be set
through attributes. You can use attributes to have the Framework handle multithreading
synchronization. Remoting of objects becomes straightforward through the use of attributes.

The compiler adds this Serializable attribute to the metadata of the Customer class
to indicate that the Framework should save and restore the object. Metadata is additional
information about the code and data within a .NET application. Metadata, a feature of the
Common Language Runtime, provides such information about the code as:

• Version and locale information
• All the types
• Details about each type, including name, visibility, and so on
• Details about the members of each type, such as methods, the signatures of

methods, and the like
• Attributes

Since metadata is stored in a programming-language-independent fashion with the
code, not in a central store such as the Windows Registry, it makes .NET applications self-
describing. The metadata can be queried at runtime to get information about the code (such
as the presence or absence of the Serializable attribute). You can extend the metadata by
providing your own custom attributes.

In our example, the Framework can query the metadata to discover the structure of the
Customer object in order to be able to save and restore it.

Types

Types are at the heart of the programming model for the CLR. A type is analogous to a
class in most object-oriented programming languages, providing an abstraction of data and be-
havior, grouped together. A type in the CLR contains:

Fields (data members)
Methods
Properties
Events

2 Comment out the Serializable attribute in the program (you can use the C/C++ /* */ comment syntax) and see
what happens.

 5

There are also built-in primitive types, such as integer and floating point numeric types,
string, etc. In the CLR there are no functions outside of types, but all behavior is provided via
methods or other members. We will discuss types under the guise of classes and value types
when we cover C#.

.NET Framework Class Library

just two of more than 2500 classes in the .NET
Framework that provide plumbing and system services for .NET applications. Some of the

ngs, arrays, and formatting).
• Networking

cs

ces that allow us to expose component interfaces over the Internet
ogramming

Interface-Based Programming

d therefore do not want to rely on the Frame-
work’s serialization. Your class can inherit from the ISerializable interface and provide the

the interface! The Frame-
work

ns to standard functionality that can be used by the Framework. Interfaces also al-
low you to program using methods on the interface rather than methods on the objects. You

The Formatter and FileStream classes are

functionality provided by the .NET Framework includes:

• Base class library (basic functionality such as stri

• Security
• Remoting
• Diagnosti
• I/O
• Database
• XML
• Web servi
• Web pr
• Windows User Interface

Suppose you want to encrypt your data an

appropriate implementation. (We will discuss how to do this in a later chapter.) The Frame-
work will then use your methods to save and restore the data.

How does the Framework know that you implemented the ISerializable interface? It
can query the metadata related to the class to see if it implements

can then use either its own algorithm or the class’s code to serialize or deserialize the
object.

Interface-based programming is used in .NET to allow your objects to provide imple-
mentatio

6

can p

ime can do all kinds of wonderful things. But does every-
s! Every type, whether it is user defined (such as Cus-

tomer) or part of the Framework (such as FileStream), is a .NET object. All .NET objects

its layout.

The .NET Framework has to make some assumptions about the nature of the types that will
s are the Common Type System (CTS). The CTS defines

the rules for the types and operations that the Common Language Runtime will support. It is

re every reference to an object points to a defined memory layout. If arbitrary pointer
opera

 later be converted to a platform’s native
code.

y.

rogram without having to know the exact type of the object. For example, the format-
ters (such as the SOAP formatter used here) implement the IFormatter interface. Programs
can be written using the IFormatter interface and thus are independent of any particular
current (binary, SOAP) or future formatter and still work properly.

Everything Is an Object

So if a type has metadata, the runt
thing in .NET have metadata? Ye

have the same base class, the system’s Object class. Hence everything that runs in .NET has
a type and therefore has metadata.

In our example, the serialization code can walk through the ArrayList of customer
objects and save each one as well as the array it belongs to, because the metadata allows it
to understand the object’s type and

Common Type System

be passed to it. These assumption

the CTS that limits .NET classes to single implementation inheritance. Since the CTS is
defined for a wide range of languages, not all languages need to support all features of the
CTS.

The CTS makes it possible to guarantee type safety, which is critical for writing reli-
able and secure code. As we noted in the previous section, every object has a type and
therefo

tions are not allowed, the only way to access an object is through its public methods
and fields. Hence it’s possible to verify an object’s safety by analyzing the object. There is
no need to know or analyze all the users of a class.

How are the rules of the CTS enforced? The Microsoft Intermediate Language (MSIL
or IL) defines an instruction set that is used by all .NET compilers. This intermediate lan-
guage is platform independent. The MSIL code can

 Verification for type safety can be done once based on the MSIL; it need not be done
for every platform. Since everything is defined in terms of MSIL, we can be sure that the
.NET Framework classes will work with all .NET languages. Design no longer dictates lan-
guage choice; language choice no longer constrains design.

MSIL and the CTS make it possible for multiple languages to use the .NET Frame-
work since their compilers produce MSIL. This one of the most visible differences between
.NET and Java, which in fact share a great deal in philosoph

 7

ILDA

) can display the metadata
and MSIL instructions associated with .NET code. It is a very useful tool both for debug-

r increasing your understanding of the .NET infrastructure. You can use
examine the .NET Framework code itself.3 Figure 2–1 shows a fragment of the

SM

The Microsoft Intermediate Language Disassembler (ILDASM

ging and fo
ILDASM to
MSIL code from the Serialize example, where we create two new customer objects and add
them to the list.4

Figure 2–1 Code fragment from Serialize example.

The newobj instruction creates a new object reference using the constructor parame-
Stloc stores the value in a local variable. Ldloc loads a local variable.6 It is strongly

mended that you play with ILDASM and learn its features.
ter.5
recom

3 ILDASM is installed on the Tools menu in Visual Studio.NET. It is also found in the Micro-
soft.NET\FrameworkSDK\Bin subdirectory. You can invoke it by double-clicking on its Explorer entry or from the
command line. If you invoke it from the command line (or from VS.NET) you can use the /ADV switch to get some

ot a parameter. IL is a stack-based language, and the constructor is a metadata token previously

all about MSIL in the ECMA documents, specifically the Partition III CIL Instruction Set.

advanced options.
4 Open Serialize.exe and Click on the plus (+) sign next to Test. Double-click on Main to bring up the MSIL for the
Main routine.
5 Technically it is n
pushed on the stack.
6 You can read

8

Lan

ge and common base class
make it possible for languages to interoperate. But since all languages need not implement

ssible for one language to have a feature that another

e a second instance of the Customer object was assigned to the
same variable (cust) as the first instance without freeing it. None of the allocated storage in

deallocated. .NET uses automatic garbage collection to reclaim mem-
located on the heap becomes orphaned, or passes out of scope, it is

guage Interoperability

Having all language compilers use a common intermediate langua

all parts of the CTS, it is certainly po
does not.

The Common Language Specification (CLS) defines a subset of the CTS representing
the basic functionality that all .NET languages should implement if they are to interoperate
with each other. This specification enables a class written in Visual Basic.NET to inherit
from a class written in COBOL.NET or C#, or to make interlanguage debugging possible.
An example of a CLS rule is that method calls need not support a variable number of argu-
ments, even though such a construct can be expressed in MSIL.

CLS compliance applies only to publicly visible features. A class, for example, can
have a private member that is non-CLS compliant and still be a base class for a class in an-
other .NET language. For example, C# code should not define public and protected class
names that differ only by case sensitivity, since languages such as VB.NET are not case
sensitive. Private fields could have case sensitive names.

Microsoft itself is providing several CLS-compliant languages: C#, Visual Ba-
sic.NET, and C++ with Managed Extensions. Third parties are providing additional lan-
guages (there are over a dozen so far). ActiveState is implementing Perl and Python. Fujitsu
is implementing COBOL.

Managed Code

In the serialization exampl

the example was ever
ory. When memory al
placed on a list of memory locations to be freed. Periodically, the system runs a garbage
collection thread that returns the memory to the heap.

By having automatic memory management the system has eliminated memory leak-
age, which is one of the most common programming errors. In most cases, memory alloca-
tion is much faster with garbage collection than with classic heap allocation schemes. Note
that variables such as cust and list are object references, not the objects themselves. This
makes the garbage collection possible.

Garbage collection is one of several services provided by the Common Language
Runtime (CLR) to .NET programs.7 Data that is under the control of the CLR garbage col-

7 Technically, metadata, the CTS, the CLS, and the Virtual Execution System (VES) are also part of the CLR. We

tails refer to the Common Language Infrastructure (CLI) Partition I: Concepts and Architec-
are using CLR here in the sense that it is commonly used. The VES loads and runs .NET programs and supports late
binding. For more de
ture document submitted to ECMA. This document is loaded with the .NET Framework SDK.

 9

lectio

piler will prevent
such

and u

 defined entry and exit
points

f the CLR is to load and run .NET programs.
.NET programs are deployed as assemblies. An assembly is one or more EXEs or

out the entire assembly is
stored

e manifest is stored in the assembly and not
in a s

mscorlib and System.Runtime.Formatters.SOAP. These statements also indicate the ver-

n process is called managed data. Managed code is code that can use the services of
the CLR. .NET compilers that produce MSIL can produce managed code.

Managed code is not automatically type safe. C++ provides the classic example. You
can use the __gc attribute to make a class garbage collected. The C++ com

classes from using pointer arithmetic. Nonetheless, C++ cannot be reliably verified.8
Code is typically verified for type safety before compilation. This step is optional and

can be skipped for trusted code. One of the most significant differences between verified
nverified code is that verified code cannot use pointers.9 Code that used pointers could

subvert the Common Type System and access any memory location.
Type safe code cannot be subverted. A buffer overwrite is not able to corrupt other

data structures or programs. Methods can only start and end at well
. Security policy can be applied to type safe code10. For example, access to certain

files or user interface features can be allowed or denied. You can prevent the execution of
code from unknown sources. You can prevent access to unmanaged code to prevent subver-
sion of .NET security. Type safety also allows paths of execution of .NET code to be iso-
lated form one another.11

Assemblies

Another function o

DLLs with associated metadata information. The metadata ab
 in the assembly’s manifest. The manifest contains, for example, a list of the assem-

blies upon which this assembly is dependent.
In our Serialize example there is only file in the assembly, serialize.exe. That file con-

tains the metadata as well as the code. Since th
eparate file (like a type library or registry), the manifest cannot get out of sync with the

assembly. Figure 2–2 shows the metadata in the manifest for this example.12 Note the as-
sembly extern statements that indicate the dependencies on the Framework assemblies

sion of those assemblies that serialize.exe depends on.

8 The most immediate reason for this is that the C Runtime Library (CRT) that is the start up code for C++ programs

MSIL is managed code. The CTS permits MSIL to have unman-

hapter 8.
ANIFEST item.

was not converted to run under .NET because of time constraints. Even if this were to be done, however, there are
two other obstacles to verifying C++ code. First, to ensure that the verification process can complete in a reason-
able amount of time, the CLR language specifications require certain IL language patterns to be used and the man-
aged C++ compiler would have to be changed to accommodate this. Second, after disallowing the C++ constructs
that inhibit verification (like taking the address of a variable on the stack, or pointer arithmetic), you would wind
up with a close approximation to the C# language.
9 It would not be correct to say that code written in
aged pointers in order to work with unmanaged data in legacy code. The reverse is not true; unmanaged code can-
not access managed data. The CLS prohibits unmanaged pointers.
10 This is discussed in more detail in Chapter 12.
11 See the discussion of Application Domains in C
12 Open serialize.exe in ILDASM and double-click on the M

10

Figure 2–2 Manifest for the Serialize assembly.

Assemblies can be versioned, and the version is part of the name for the assembly. To
on an assembly it needs a unique name. Public/private encryption keys are used to gen-

e a unique (or strong) name.
versi
erat

Assemblies c yed vate deployment all
the assemblies that an application needs are copied to the same directory as the application.
If an

 part of the assembly name, multiple versions can be de-
ploye

an be deplo either privately or publicly. For pri

assembly is to be publicly shared, an entry is made in the Global Assembly Cache
(GAC) so that other assemblies can locate it. For assemblies put in the GAC a strong name
is required. Since the version is

d side by side on the same machine without interfering with each other. Whether you
use public or private deployment there is no more “DLL Hell.” 13

Assembly deployment with language interoperability makes component development
almost effortless.

13 This is discussed in much more detail in Chapter 7.

 11

JIT C

Before executing on the target machine, MSIL has to be translated into the machine’s native
 done before the application is called, or at runtime. At runtime, the
just-in-time (JIT) compiler. The Native Image Generator (Ngen.exe)

You may like the safety and ease-of-use features of managed code but you might be con-
rmance. Early assembly language programmers had similar concerns
guages came out.

ompilation

code. This can either be
translation is done by a
translates MSIL into native code so that it is already translated when the program is started.

The advantage of pre-translation is that optimizations can be performed. Optimiza-
tions are generally impractical with JIT because the time it takes to do the optimization can
be longer than it takes to compile the code. Start up time is also faster with pre-translation
because no translation has to be done when the application starts.

The advantage of JIT is that it knows what the execution environment is when the
program is run and can make better assumptions, such as register assignments, when it gen-
erates the code. Only the code that is actually executed is translated, code that never gets
executed is never translated.

In the first release of .NET, the Native Image Generator and the JIT compiler use the
same compiler. No optimizations are done for Ngen, its only current advantage is faster
startup. For this reason we do not discuss Ngen in this book.

Performance

cerned about perfo
when high level lan

The CLR is designed with high performance in mind. With JIT compilation, the first
time a method is encountered, the CLR performs verifications and then compiles the method
into native code (which will contain safety features, such as array bounds checking). The
next time the method is encountered, the native code executes directly. Memory manage-
ment is designed for high performance. Allocation is almost instantaneous, just taking the
next available storage from the managed heap. Deallocation is done by the garbage collec-
tor, which has an efficient multiple-generation algorithm.

You do pay a penalty when security checks have to be made that require a stack walk
as we will explain in the Security chapter.

Web pages use compiled code, not interpreted code. As a result ASP.NET is much
faster than ASP.

For 98% of the code that programmers write, any small loss in performance is far out-
weighed by the gains in reliability and ease of development. High performance server appli-
cations might have to use technologies such as ATL Server and C++.

12

SUMMARY

.NET solves the problems that have plagued Windows development in the past. There is one
development paradigm for all languages. Design and programming language choices are no
longer in conflict. Deployment is more rational and includes a versioning strategy. While
we will talk more about it in later chapters, metadata, attribute-based security, code verifica-
tion, and type safe assembly isolation make developing secure applications much easier.
The plumbing code for fundamental system services is provided, yet you can extend or re-
place it if you must.

The Common Language Runtime provides a solid base for developing applications of
the future. The CLR is the foundation whose elements are the Common Type System, meta-
data, the Common Language Specification, and the Virtual Execution System (VES) that
executes managed code.14 As we shall see in future chapters, .NET makes it easier to de-
velop Internet applications for both service providers and customer based solutions. With
the unified development platform .NET provides, it will be much easier than in the past for
Microsoft or others to provide extensions.

All this is made possible by putting old technologies together in the CLR creatively:
intermediate languages, type safe verification, and of course, metadata. As you will see,
metadata is used in many features in .NET.

We shall expand on these topics in the course of the book. We next cover the C# lan-
guage. Depending on your knowledge of C#, you might be able to skim or skip the next
three chapters.

14 The Base Class Libraries classes (BCL) are also part of the CLR.

