
© Copyright Reliable Software, Inc.

Application Domains and Contexts Application Domains and Contexts
and Threads, Oh My!and Threads, Oh My!

Michael Stiefel
co-author “Application Development Using C# and .NET”

© Copyright Reliable Software, Inc.

Why Understand App Domains?Why Understand App Domains?

By understanding Application Domains you will
have an opportunity to unify and tie together
various concepts and mechanisms with .NET.
You will meet them sooner or later.
But when will I meet them?

© Copyright Reliable Software, Inc.

When you least expect to...When you least expect to...

Dorothy: “Do you suppose we'll meet any strange concepts when programming with .NET?"
Tinman: "We might."
Scarecrow: “Concepts that...that eat straw?"
Tinman: "Some. But mostly application domains, and contexts, and threads."
All: “Application Domains and Contexts and Threads, oh my!

Application Domains and Contexts and Threads, oh my!"

© Copyright Reliable Software, Inc.

ScalabilityScalability

The more applications that can run simultaneously,
the more scalable the solution.
For applications to run together, they must be
isolated from each other.
– If one application crashes, the others must continue to

run.
– One application cannot directly access the data, or

directly call methods, in another application.

© Copyright Reliable Software, Inc.

Win 32 Application IsolationWin 32 Application Isolation

Applications are isolated in separate processes.
– Each process has its own address space.
– A process context switch is usually implemented in

the processor.
Processes are inefficient for really scalable
solutions (tens to hundreds of thousands).
– Process switches are slow.
– Interprocess communication is much slower than

intraprocess communication.

© Copyright Reliable Software, Inc.

.NET Application Isolation.NET Application Isolation

The Common Language Runtime uses
Application Domains to provide isolation in
software.
A type-safe assembly’s types and methods can
only be accessed in well defined ways.
Hence, the CLR can prevent direct access to
types from one application domain to another.
Application Domains can contain multiple
assemblies.

© Copyright Reliable Software, Inc.

Application DomainsApplication Domains

Security Evidence
Configuration Information
Loaded Assemblies
Code Isolation
Think of ASP.NET as an example.

© Copyright Reliable Software, Inc.

Code Access Security PolicyCode Access Security Policy

Assemblies are assigned a certain level of trust.
– For a given level of trust certain permissions are

allowed, others are denied.
– Examples of permissions are the right to access a file,

use the clipboard, or make or accept Web connections.
A particular level of trust is defined by a Code
Group.
– A code group is defined by various characteristics

such as whether the assembly is running on the local
computer or on a particular web site.

© Copyright Reliable Software, Inc.

Security EvidenceSecurity Evidence

Evidence is the information associated with an
assembly that allows the CLR to determine to
which Code Group the assembly belongs.
Examples of evidence:

System.Security.Policy.Zone : MyComputer
System.Security.Policy.Url : file://E:/AppDomainSecurity.exe

The Evidence class represents the collection of
evidence. Classes such as Zone and Url model
the individual pieces of evidence.

© Copyright Reliable Software, Inc.

Configuration FilesConfiguration Files

If an assembly has a strong name, you can
specify the version policy.
You can also specify where to locate assemblies
that have not yet been loaded.
– The directory in which the application runs is known

as the application base.
The AppDomainSetup class models this
information.

© Copyright Reliable Software, Inc.

AppDomainSetupAppDomainSetup Class PropertiesClass Properties

ApplicationBase root application directory
ConfigurationFile Gets or sets the name of the
configuration file for an application domain.
LoaderOptimization Specifies the optimization policy
used to load an executable.
PrivateBinPath Gets or sets the list of directories that is
combined with the ApplicationBase directory to probe for
private assemblies.
PrivateBinPathProbe Gets or sets the private binary
directory path used to locate an application.
Private assemblies allow for building isolated apps.

© Copyright Reliable Software, Inc.

AppDomainAppDomain ClassClass

Represents an application domain.
To create an application domain instance:
public static AppDomain CreateDomain(

string appDomainName,
Evidence appDomainEvidence,
AppDomainSetup appDomainSetupInformation)

Application domain creator can specify security
evidence, and configuration.
– Allows for building applications that cannot

interfere with one another.

© Copyright Reliable Software, Inc.

Executing CodeExecuting Code

Once an assembly has been created you can
invoke methods to start executing code.
– ExecuteAssembly

Execute code in assembly starting with entry method.

– Load
Loads an assembly.

– CreateInstance
Create a type, invoke methods through reflection.

Can modify the evidence and culture.

© Copyright Reliable Software, Inc.

AppDomain ExampleAppDomain Example
Evidence ev = AppDomain.CurrentDomain.Evidence;

Evidence evidence = new Evidence(ev);

evidence.AddHost(new Url(@”file://f:/”);

evidence.AddHost(new Test());

AppDomainSetup setupInfo = new AppDomainSetup();

setupInfo.ConfigurationFile = "foo.config";

AppDomain appDomain = AppDomain.CreateDomain("NewAppDomain", evidence,
setupInfo);

appDomain.ExecuteAssembly("TargetAssembly.exe");

© Copyright Reliable Software, Inc.

Unloading Application DomainsUnloading Application Domains

When an application finishes executing the
AppDomain can be unloaded.
– Individual assemblies in an application domain cannot

be unloaded.
– The default (initial) application domain of a process

cannot be unloaded.

© Copyright Reliable Software, Inc.

TypeResolve EventTypeResolve Event

If an assembly load fails, the type resolve event
is raised.
If handled, the application domain can provide
the necessary assembly using any rules it wants,
including building it on the fly.

© Copyright Reliable Software, Inc.

ThreadsThreads

A process can have one or more threads of
execution.
– Threads are scheduled by the system.
– A thread’s context includes the machine

registers and the stack.

© Copyright Reliable Software, Inc.

ThreadThread ClassClass

The currently executing thread is found from the
static property Thread.CurrentThread.
.NET threads run as delegates define by the
ThreadStart class:

public delegate void ThreadStart();
A thread instance is represented by the Thread
class, the Start method causes the thread to run.
The Join method causes a thread to wait on
another thread.

© Copyright Reliable Software, Inc.

Thread SynchronizationThread Synchronization

Using threads can cause race conditions.
– Does i = i + 1 represent a single statement?
– What could go wrong?

© Copyright Reliable Software, Inc.

MonitorMonitor ClassClass

The Monitor class allows you to set up a critical
section where only one thread can execute at a
time.
– Monitor.Enter(object o), Monitor.Exit(object o)

You can wait and signal objects.
– Monitor.Wait, Monitor.Pulse, Monitor.PulseAll

You do not have to block on Monitor.Enter.
– Monitor.TryEnter

© Copyright Reliable Software, Inc.

InterlockedInterlocked ClassClass

The Interlocked class has methods for insuring
the increments, decrements, and exchanges for
single values update correctly.
Interlocked.Increment(ref OutputCount);

© Copyright Reliable Software, Inc.

Synchronization AttributesSynchronization Attributes

Deriving your class from ContextBoundObject,
you can use the SynchronizationAttribute class
to let the system handle the synchronization for
you for all instance methods on the object
The SynchronizationAttribute class has 4 values:
– REQUIRED, REQUIRES_NEW,

SUPPORTED, NOT_SUPPORTED
[Synchronization(SynchronizationAttribute.REQUIRED)]
class Counter : ContextBoundObject
{
...

© Copyright Reliable Software, Inc.

Threads and Application DomainsThreads and Application Domains

A process can have multiple application
domains and multiple threads: what is the
relation between a thread and an
application domain?
Application domains run on the thread that
created them.

© Copyright Reliable Software, Inc.

Code SampleCode Sample

ThreadStart x = new ThreadStart(RunCode);
Thread t = new Thread(x);
t.Start();
...
static void RunCode()

{
...
AppDomain appDomain =

AppDomain.CreateDomain("NewAppDomain",
evidence, setupInfo);

appDomain.ExecuteAssembly("TargetAssembly.exe");
}

© Copyright Reliable Software, Inc.

CLR HostingCLR Hosting

If you need to use .NET from within a legacy
application, you can write a CLR Host.
An CLR Host must load the CLR, setup the
application domains, and then execute their code.
ASP.NET uses an ISAPI filter to start the CLR
and load the Web services apps.
Yukon will use CLR Hosting so that you can
write stored procedures in .NET languages.

© Copyright Reliable Software, Inc.

Starting up the CLRStarting up the CLR

Since side-by-side versions of the CLR can co-exist, you
can specify which version to startup.
– If unspecified, the latest version is used.
– In Version 1, only one CLR version runs at a time in a process.

Specify which CLR execution engine you want:
workstation or server.
– Uniprocessor machines use workstation version.

Specify which garbage collector you want.
Request ICorRuntimeHost interface to start creating
application domains.

© Copyright Reliable Software, Inc.

CorBindToRuntimeExCorBindToRuntimeEx

CComBSTR bstrVer(L"v0.0.0000");
CComBSTR bstrCLRType(L"wks");
CComPtr<ICorRuntimeHost> pHost;

HRESULT hr = CorBindToRuntimeEx(NULL, bstrCLRType,
STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN |
STARTUP_CONCURRENT_GC, CLSID_CorRuntimeHost,
IID_ICorRuntimeHost, (void **)&pHost);

if (!SUCCEEDED(hr))
{

...
}

© Copyright Reliable Software, Inc.

Server and Workstation EnginesServer and Workstation Engines

Server version takes advantage of multiple
processors.
– Garbage collection can take place on each processor

in parallel.
Single processor machines always get
workstation version.

© Copyright Reliable Software, Inc.

Garbage Collection SettingsGarbage Collection Settings

Concurrent Garbage Collection occurs when
garbage collection is done on background
threads.
– More responsive UI, but slower overall performance.

Nonconcurrent Garbage Collection (default) is
done on the user code thread.
– Always better for server applications, better

performance

© Copyright Reliable Software, Inc.

ICorRuntimeHostICorRuntimeHost

Can stop and start CLR.
Create the default domain.

pHost->Start();
CComPtr<IUnknown> punkDefaultDomain;
hr = pHost->GetDefaultDomain(&punkDefaultDomain);
CComPtr<_AppDomain> pDefaultDomain;
hr = punkDefaultDomain->QueryInterface(__uuidof(_AppDomain),

(void**) &pDefaultDomain);

...
pHost->Stop();

© Copyright Reliable Software, Inc.

Managed and UnManaged HostsManaged and UnManaged Hosts

The hosting code is divided into a unmanaged
and managed parts.
– It is far easier to manage application domains from

managed code.
– Avoids transitions from managed to unmanaged code.

The next step is to start up the managed host and
invoke the startup method in the process’ default
domain.

© Copyright Reliable Software, Inc.

Code SampleCode Sample

CComBSTR bstrAssembly(L"AppHost");
CComBSTR bstrType(L"ManagedHost");
hr = pDefaultDomain->CreateInstance(bstrAssembly, bstrType, &pObjectHandle);
...
hr = v.pdispVal->QueryInterface(__uuidof(_Object), (void**) &pobj);
...
_Type* pType;
hr = pobj->GetType(&pType);
...
CComBSTR bstrArgument(L"StartManagedHost");
_MethodInfo* mi;
hr = pType->GetMethod_6(bstrArgument, &mi);
...
CComVariant vReturnValue;
hr = mi->Invoke_3(vHandle, NULL, &vReturnValue);

© Copyright Reliable Software, Inc.

Managed HostManaged Host

The managed host then manages a thread pool to
run the application domains it manages.
The appropriate security, configuration files and
location are used as appropriate.

© Copyright Reliable Software, Inc.

Code IsolationCode Isolation

How can you use data or call methods that live in
another application domain?
– Marshal by Value (the data gets copied)
– Marshal by Reference (you get a reference to the data)

This applies to function arguments or data
access.

© Copyright Reliable Software, Inc.

Marshal By ValueMarshal By Value

Serialization makes a copy of the object.
– Use Serialization attribute or implement ISerializable
– Unfeasible for large objects (performance)
– Duplicates object, no network hit to access object

[Serializable]
class Counter
{
...

© Copyright Reliable Software, Inc.

Marshal By ReferenceMarshal By Reference

Derive object from MarshalByRefObject and
you will get a reference to the data in the other
application domain.
Uses proxies to access object
Use if state must stay in one app domain or
object is too large to copy

class Counter : MarshalByRefObject
{
...

© Copyright Reliable Software, Inc.

ContextContext

Contexts are used inside of application domains
to control access to objects that require a special
execution environment.
Derive the object from ContextBoundObject
which derives from MarshalByRefObject.
– Proxies are used even with an application domain so

the infrastructure can provide the necessary services.
– I.E.: different threading or transaction requirements.
– Objects in the same context do not use proxies.

© Copyright Reliable Software, Inc.

SummarySummary

Application Domains provide application
isolation in software.
Threads can run across application domains
providing independent execution paths in an
application.
Contexts provide a means for the infrastructure
to provide services to make different application
objects work together.

	Application Domains and Contexts and Threads, Oh My!
	Why Understand App Domains?
	When you least expect to...
	Scalability
	Win 32 Application Isolation
	.NET Application Isolation
	Application Domains
	Code Access Security Policy
	Security Evidence
	Configuration Files
	AppDomainSetup Class Properties
	AppDomain Class
	Executing Code
	AppDomain Example
	Unloading Application Domains
	TypeResolve Event
	Threads
	Thread Class
	Thread Synchronization
	Monitor Class
	Interlocked Class
	Synchronization Attributes
	Threads and Application Domains
	Code Sample
	CLR Hosting
	Starting up the CLR
	CorBindToRuntimeEx
	Server and Workstation Engines
	Garbage Collection Settings
	ICorRuntimeHost
	Managed and UnManaged Hosts
	Code Sample
	Managed Host
	Code Isolation
	Marshal By Value
	Marshal By Reference
	Context
	Summary

