
Why Cloud Architecture is Different!

Michael Stiefel
www.reliablesoftware.com
development@reliablesoftware.com

Architecting For Failure

Outsource Infrastructure?

Traditional Web Application

Web Site
Virtual Machine / Directly on Hardware
100 MB Relational Database
Inbound Transactions
Output Transactions
File System

Hosting Provider Costs

Provider $ / Monthly Cost

Host Gator 9.95

Go Daddy 10

ORCS Web 69

Amazon 83+ BYOS

Windows Azure 97

Note: traditional hosting, no custom colocation, virtualized data centers.

Cloud is Not Cheaper for Hosting

Perhaps, Higher Availability?

SLA is Not Radically Different

Provider Compute SLA (%)

Go Daddy 99.9

ORCS Web 99.9

Host Gator 99.9

Amazon 99.95

Azure 99.95

Difference is seven minutes a day; 1.75 days a year.

Higher Rate Since You Pay for Flexibility

Hosting is Not Cloud Computing

Why Utility Computing?

Scalability: do not have to pay for peak scenarios.
Availability: can approach 100% if you want to pay.

Architecturally, they are the same problem

You must design to accommodate
missing computing resources.

Designing for Failure is Cloud Computing

What’s wrong with this Code Fragment?

ClientProxy client = new ClientProxy();
Response response = client.Do (request);

Never assume that any interface between
two components always succeeds.

So You Put in a Catch Handler

try
{

ClientProxy client = new ClientProxy();
int result = client.Do (a, b, c);

}
catch (Exception ex)
{

}

What if…

a timeout, how many retries?
the result is a complete failure?
the underlying hardware crashed?
you need to save the user’s data?
you are in the middle of a transaction?

What Do You Put in the Catch Handler?

try
{

ClientProxy client = new ClientProxy();
int result = client.Do (a, b, c);

}
catch (Exception ex)

{
????

}

You can’t program yourself out of a failure.

Failure is a first-class design citizen.

The critical issue is how to respond to
failure. The underlying infrastructure

cannot guarantee availability.

Principle #1

Consequences of Failure

Multiple tiers and dependencies
If your order queue fails, no orders
If your customer service fails, no

membership information

The more dependencies, the more
consequences of a poorly handle failure

Dependencies include your code, third
parties, the Internet/Web, anything you

do not control

Unhandled failures propagate (like
cracks) through your application.

Failures Cascade – an unhandled failure
in one part of the system becomes a

failure of your application.

Principle #2

Two Types of Failure

Transient Failure
Resource Failure

Typical Response to a Transient Failure

Retry
How Often?
How Long Before You Give Up?

Delays Cascade Just Like Failures

Delays occur while you are waiting or retrying
Delays hog resources like threads, TCP/IP ports,
database connections, memory.
Since delays are usually the result of resource
bottlenecks, waiting or retrying for long periods adds
to the bottleneck.

Transient failures become resource failures

Transient Failures

Retry for a short time, then give up (like a circuit
breaker) if unsuccessful.
Never block on I/O, timeout and assume failure.

There is no such thing as a transient
failure. Fail fast and treat it as a resource

failure.

Principle #3

Make Components Failure Resistant

Must Provide Failure Isolation

Make Components Failure Resistant

Design For Beyond Largest Expected Load
Understand latency of adding a new resource
User load, virtual memory, CPU size, bandwidth, database

Handle all Errors
Failure affects more people than on the desktop.

Provide Failure Isolation

Catch all exceptions
Log all errors
Return Succeed / Fail to External Services
Have Failure Strategy For Dependent Services

Define your own SLA

Stress test components and system

A chain is a strong as its weakest link

Use a Margin of Safety when designing
the resources used.

Principle #4

What is the cost of availability?

Any component or instance can fail –
eliminate single points of failure.

Search for Dependencies

Hardware / Virtual Machines
Third Party Libraries
Internet/Web
Interfaces to your own components
TCP/IP ports
DNS Servers
Message Queues
Database Drivers
Credit Card Processors, Geocoding services, etc.

Examine Queries

Only three types of result sets:
Zero, One, Many (can become large overnight)

Search Providers limit results returned
Remember those 5 way joins your ORM uses
Objects on a DCOM or RMI call

Eliminate single points of failure. Accept
the fact that you must build a distributed

application.

Principle #5

You need redundancy...

but you have to manage state.

Solutions such as database mirroring may
have unacceptable latencies, such as

over geography.

Reduce the parts of your application that
handle state to a minimum.

Loss of a stateful component usually
means loss of user data.

State Handling Components

Does the UI layer need session state?
Business Logic, Domain Layer should be stateless
Use queues where they make sense to hold data
Design services for minimal dependencies

Pay with a customer number
Keep state with the message

Don’t forget infrastructure logs, configuration files
State is in specialized stores

Build atomic services.

Atomic means unified, not small.

Decouple the services.

Stateless components allow for scalability
and redundancy.

What about the data tier?

Can you relax consistency constraints?
What is acceptable data loss?

What is the cost of an apology?

How important is the relational model?

Design for Eventual Consistency

Consider CQRS

Monitor your components.

Understand why they fail.

Reroute traffic to existing instances or
another data center or geographic area?

Add more instances?

Caching or throttling can help your
application run under failure.

Poorer performance may be acceptable.

Automate…Automate….Automate

Degrade gracefully and predictably.
Know what you can live without.

Principle #6

Cloud Outages Happen

Some Are Normal

Some Are Black Swans

Humans Reason About Probabilities Poorly

Assume the Rare Will Occur - It Will Occur

Principle #7

Case Study: Amazon Four Day Outage

Facts

April 21, 2011
One Day of Stabilization, Three Days of Recovery
Problems: EC2, EBS, Relational Database Service
Affected: Quora, Hootsite, Foursquare, Reddit
Unaffected: Netflix, Twillo

Why were Netflix and Twillo Unaffected?

They Designed For Failure

Netflix Explicitly Architected For Failure

Although more errors, higher latency, no
increase in customer service calls or

inability to find or start movies.

Key Architectural Decisions

Stateless Services
Data stored across isolation zones

Could switch to hot standby

Had Excess Capacity (N + 1)
Handle large spikes or transient failures

Used relational databases only where needed.
Could partition data

Degraded Gracefully

Degraded Gracefully

Fail Fast, Aggressive Timeouts
Can degrade to lower quality service

no personalized movie list, still can get list of available movies

Non Critical Features can be removed.

Chaos Monkey

Some Problems

Had to manually reroute traffic; use more automation
in the future for failover and recovery
Round robin load balancer can overload decreased
number of instances.

May have to change auto scaling algorithm and internal load
balancing.

Expand to Geographic Regions

Summary

Hosting in a cloud computing environment is valid.

Cloud Computing means designing for failure.

