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How do you model data in the cloud?



Relational Model

A query operation on a relation (table) produces 
another relation (table).

Based on the relational algebra and calculus, a query 
engine can produce provably correct results.



Declarative Language Allows Optimization



Architectural Assumption:
Data Outlasts Implementation
Data Separate From Code



Consistency Required

Transactional consistency
No specification of insert, update or delete.
Non clustered indices consistent with data

Design consistency
Denormalized data must be kept consistent
Lossless join decompositions



Transactional Consistency Means 
Holding Database Locks



Holding Locks Interferes With Availability 
and Scalability



Do Availability and Consistency Conflict?



Laws of Physics 
Technology Limits
Economics



Laws of Physics



Latency Exists

Speed of light in fiber optic cable: 124,000 miles per 
second
Ideal ping Japan to Boston takes 100 ms.
Fetch 10 images for a web site:  1 second
Ignores Latency of the operation



Bandwidth is Not Cheap

Shannon's Law: C = B log2 (1 + S / N)
Capacity = bit / second
Bandwidth (hertz)
S/N  * 5 to  double capacity given bandwidth



Latency is Not Bandwidth

Size of the shovel vs. how fast you can shovel

Infinite shovel capacity(bandwidth) is limited by how 
fast one can shovel (latency).



Great Bandwidth Terrible Latency

Buy a two terabyte disk drive

Drive with it from Boston to New York



You can only move data so fast

You can only move so much data



Technology Limits



Connectivity is Not Always Available

Cell phone
Data Center Outages
Equipment Upgrades
Data redundancy to improve reliability
Offline mode on client for availability



Expensive to Move Data

Data naturally lives in multiple places
Computational Power gets cheaper faster than network 
bandwidth
Cheaper to compute where data is instead of moving it

Distributed Computing Economics Jim Gray 



Economics Dictate Scale Out, Not Up

Cheap, commodity hardware argues for spreading 
load across multiple servers

Relational Databases were not designed to be run 
on clusters (shared disk subsystem)



Wind up Building a Distributed System



Can the relational database scale?



Traditionally, focus was on optimizing specific 
problems



Optimize Insert/Update or Read?

Data intensive relational applications:
frequent small read / writes 
large size reads, but infrequent writes

Problems: 
Heavy workloads with frequent writes
Scanning over large indices for queries
Dirty reads can mean inconsistent data



What does it mean to scale?

Large Number of Users
Geographic Distribution
Hugh Amounts of Data



To Scale a Distributed System 
Focus on Data, Not Just Computation



CAP Theorem

Can Have Any Two

Eric Brewer
UC Berkeley, Founder 
Inktomi

Consistency Availability

Tolerance to 
Network 
Partitioning

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf



Consistency and Availability

Single site Database
Database Cluster
LDAP

Two phase commit
Validate Cache

Consistency Availability

Partitioning



Consistency and Partitioning

Distributed Database
Distributed Locking

Pessimistic Locking
Minority Partitions 
invalid

Consistency Availability

Partitioning



Availability and Partitioning

Forfeit Consistency

Google Big Table
Amazon Simple DB
Azure Storage Tables

Optimistic Locking
Can Denormalize

Consistency Availability

Partitioning



CAP Does Not Imply:

Never give up on Durability
Atomicity within a Partition
Inconsistency should be the exception
Partition Everywhere
No ACID within a Partition
Give up on Declarative Languages such as SQL 



Then…

If we give up Consistency, how do we Partition?

If we Partition how do we recover system invariants?



Classic Ways to Partition



Distributed Objects

Distributed Objects Fail
Separate Address Space
Disparate Lifetimes
Location is Not Transparent

RPC Model Fails
Cannot Hide Network



Distributed Transactions

Relational Model works with single node/ cluster
Complexity of relations
Query plans with hundreds of options which query 
analyzer evaluates at runtime
Normalization
ACID Transactions

Quick hardware scale up difficult
Two Phase Commit works with infinite time



Better Ways to Partition

Non-Relational Approach
Key Value / Tuple Store
Document Store
Column Family Store
Graph Store

Relational Approach
Sharding

NewSQL



For Better Partitioning, Look at Data Model



Relational: Given the structure of the data,   
what kind of questions can I ask?

Non Relational: Given the questions I want to 
ask, how do I structure the data?



Model Application Specific Questions



The aggregate is the unit of atomicity in a 
NoSql Data Model



Relational vs. Aggregate



Prioritized Query Restrictions
1. How many tickets are left for an event?

date, location, event
2. What events occur on which date?

date, artist, location
3. When is a particular artist coming to town?

artist, location
4. When can I get a ticket for a type of event?

genre

5. Which artists are coming to town?
artist, location



Query Analysis
Most common combination: artist or date / location
Most common query: event / date / location

Partition based on location or venue
Allows for geographic sensitivity

Partitioning may or may not imply denormalization



Each NoSql Data Model Treats Aggregates 
Differently



In general….

Code has integrity constraints
Code handles joined queries
No standard among vendors (lock in)



Key-Value treats the aggregate as opaque
Might have a opaque set of attributes

Key is the index to the aggregate
Ordered Key-Value allows for range queries
Only the application knows the schema



Column Family is a Two Level Aggregate
Keys are first level
Aggregates are the second level
Aggregate is composed of other aggregate

Reads are common, Writes rare



Column Family Data Model (Cassandra)

Row Key

Super Column Family

Super Column 1 Super Column 2

Column 1

Value 2Value 1

Column 1

Column 2 Column 3 Column 4

Value 3 Value 4



Example

Super Column Family Column

Super Column

Key

Flexible Schema



Document Database has aggregate of 
arbitrary complexity with an index on attribute 
data.



Mechanics of Relational Database Partitioning



Find Independent Units of Data



Separate Transactions From Queries

Read
Create
Update
Delete



Transactional Units Across Databases

A-Z

A-H

H-P

P-Z

Partitioning 
Function



Partitioning Mechanisms

Horizontal Partitioning
Divide table rows across databases

Vertical Partitioning
Divide table columns across databases
Different tables in different databases
Reference data can be copied
Queries scan less data



Horizontal Partitioning
Each table contains identical columns
Data is partitioned into different databases. 

Each part is referred to as a shard.
Table is a single logical entity for updates and queries
Indices for a shard must be in the same shard
Sharding strategy based on use or query patterns



Implementing Horizontal Partitions

Function that converts sharding property into a 
database location
Primary keys unique across all shards

Shards hand out distinct ranges
Shard id is part of primary key
Pool hands out unique identifiers

No secondary keys across shards
No distributed transactions across databases
May need to UNION query results



Vertical Partitioning

Divide table columns across databases
Primary key identical for a given "row"
Data may or may not be normalized
A join across the partitions recreates the "row"



Vertical Partitioning Strategy

Columns used in different queries go in different 
partitions
Different business processes "own" a table.

Leads to service oriented approach 
Design business processes to avoid cross table joins
Transactions within service boundary



Implementing Vertical Partitions

Primary or foreign keys may be used to recreate the 
row
No secondary keys across databases
Secondary indices in different partitions might diverge
Normalize columns not frequently used
No distributed transactions



NewSQL



New Relational Database Architectures

Examples:
In-memory databases
Google Spanner



In-memory Data Model
equivalent to relational
short lived transactions
index look ups (no table scans)
repeated queries with different parameters



Google Spanner

Globally distributed relational database
Synchronizes with atomic and GPS clocks
Uses Paxos protocol for consensus



Availability or Consistency ?



What is the Cost of an Apology?

Amazon
Airline reservations
Stock Trades
Deposit of a Bank Check
Deleting a photo from Flickr or Facebook



Sometimes the cost is too high

Authentication
SAML tokens expire

Launching a nuclear weapon



Businesses Apologize Anyway

Vendor drops the last crystal vase
Check bounces
Double-entry bookkeeping requires 
compensation 

at least 13th century
Eventually make consistent (partition healing)



Software State ≠ State of the World

Software approximates the state of the world
Best guess possible
Could be wrong
Other computers might disagree



How consistent?

Business Decision
What is the cost to get it absolutely right?
What is the cost of lost business?
Computers can remember their guesses
Can replicate to share guesses
May be cheaper to forget, and reconcile later



Design For Eventual Consistency

Decouple unrelated application functionality
Focus on atomic or invariant business operations, 
not database reads or writes.
No distributed transactions
Asynchronous processing



Eventual Consistency

Different computations might come to 
different conclusions
Define message based workflows for ultimate 
reconciliation and replication of results



Not the Whole Story

Databases are not the best integration technology
Object-Relational Mismatch
Certain problems match other data models



Services, not Data, Outlast Implementation 



Application or Service Specific Databases



Case Study: Amazon Four Day Outage



Facts

April 21, 2011 
One Day of Stabilization, Three Days of Recovery
Problems: EC2, EBS, Relational Database Service
Affected: Quora,  Hootsite, Foursquare, Reddit
Unaffected: Netflix, Twillo



Netflix Explicitly Architected For Failure



Although more errors, higher latency,  no 
increase in customer service calls or inability to 

find or start movies.



Key Architectural Decisions

Stateless Services
Data stored across isolation zones

Could switch to hot standby

Had Excess Capacity (N + 1)
Handle large spikes or transient failures

Used relational databases only where needed.
Could partition data

Degraded Gracefully



Data Architecture
Separate databases:

User, Accounts, Feedback, Transactions
Split by primary access path
No business logic in database
CPU intensive work in service tier

Referential Integrity, Joins, Sorting
Avoids deadlock



Degraded Gracefully

Fail Fast, Aggressive Timeouts
Can degrade to lower quality service

no personalized movie list, still can get list of available movies

Non Critical Features can be removed.



Suggested Reading

"Life Beyond Distributed Transactions: An 
Apostate's View" by Pat Helland



Conclusions

Scalability means Users, Bandwidth,  Geography
Partitioning Changes the Data Model
Service Orientation Changes the Data Model
Design for Eventual Consistency
No need for scalability or service orientation, 

Relational Model works
Unified Data Model makes it hard to meet rapid 
change.


