
© 2004, Reliable Software, Inc.

An Experienced
Programmer’s Guide to C#

and the .NET Platform

Michael Stiefel
Reliable Software, Inc.Reliable Software, Inc. (www.reliablesoftware.comwww.reliablesoftware.com)
development@reliablesoftware.com
co-author “Application Development Using C# and .NET”

Edge 2004 East – Development Technologies Exchange
February 24 – 26, 2004 Boston, MA

© 2004, Reliable Software, Inc.

Assumptions:

•You know how to code in some “high level” language.

•You want to understand how to develop in .NET,
not just see language features.

Caveat:
Understand the object-oriented programming paradigm.

Design Patterns
Programming to an Interface not an Implementation
When to Use Inheritance
When to Use Composition

© 2004, Reliable Software, Inc.

Serialization Example
Illustrate use of C# with a simple, common, programming

task of saving and restoring data.

1. Two customer objects are created
2. Objects are added to a collection.
3. Collection is saved to disk.
4. Collection is restored from disk.

See Serialize.cs

No code was written to save or restore the data, only the
serialized format, and the destination was specified.

© 2004, Reliable Software, Inc.

Attributes

The class to be saved is marked with the Serializable attribute.

[Serializable]
class Customer
{

public string name;
public long id;

}

This attribute, along with the object’s layout is added to the
metadata associated with the object.

© 2004, Reliable Software, Inc.

Metadata
• .NET compilers emit code and metadata
• Metadata contains type information

– Name, visibility
– Fields, Methods, Properties, Events
– Layout (not byte location)
– Attributes (like Serializable)

• Metadata can be queried
• Stored with code (self –describing data)

© 2004, Reliable Software, Inc.

Attribute/Aspect Based Programming

• Customer class has Serializable attribute.
– Serialize method uses metadata to save collection and

its members.
• Support intertwined in an application that can’t

be placed in a component (behavioral metadata).
– Support for transactions
– Security settings
– Multithreading synchronization

© 2004, Reliable Software, Inc.

Framework Class Library
• Console, ArrayList, FileStream, SoapFormatter

are FCL Classes.
• Examples:

Networking
Security
Diagnostics
I/O
Database
XML
Web services and Web programming
Windows User Interface

© 2004, Reliable Software, Inc.

Namespaces

FCL classes are divided into namespaces to help resolve name
conflicts.

using System;using System;
using System.Collections;using System.Collections;
using System.IO;using System.IO;
using System.Runtime.Serialization;using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Soap;using System.Runtime.Serialization.Formatters.Soap;

You can define your own namespaces.

© 2004, Reliable Software, Inc.

Garbage Collection
• Memory was never deallocated.
• Memory that passes out of scope or is

orphaned is placed on a list of memory
locations that can be periodically reclaimed.
– Produces fast memory allocation and deallocation

• Eliminates memory leaks.
• Cust, list are object references, not pointers so

that memory can be compacted.

© 2004, Reliable Software, Inc.

Everything can be an Object
• Methods can work with objects so they can handle any

type including primitive types (long, float).
void Serialize(Stream, object);
object Deserialize(Stream)
void ArrayList.Add(object)

• C++ or Java cannot use primitive types as objects.
• In Smalltalk, primitive types are objects, but using

primitive types has a performance cost.
• In C# primitive types can be converted to objects when

necessary.

© 2004, Reliable Software, Inc.

Unified Type System
• Collections can be used with all types.
• Types are interoperable between .NET languages

– Exceptions, Classes, Inheritance

• All types inherit from System.Object
• Object references avoid random pointer errors.

– cust, list are object references

• Properties, Methods, Events, Interfaces, Delegates.
• Single Implementation Inheritance

© 2004, Reliable Software, Inc.

Type Safety
• Code usually verified before compilation.

– No buffer overwrites
– Method entry and exit at well defined points.
– No uninitialized variables
– No unsafe casts

• Security Policy applies to type safe code.
• Type safe code prohibits pointer arithmetic to prevent

subversion of the type system.
– C# pointers are prohibited in type safe code.

• Allows for application domains.

© 2004, Reliable Software, Inc.

Robust Software Development
• Garbage Collection – no memory leaks
• References – no random pointer overwrites
• Type Safety – code cannot be subverted
• Web pages can be written in C#

© 2004, Reliable Software, Inc.

Interface-Based Programming
• Interfaces are a fundamental type.

public static void SaveFile(Stream s, IFormatter f, IList l) {
f.Serialize(s, l);
s.Close();

}

• Program to pure behavior, not implementation.
• With attributes and metadata, replace system

functionality
– ISerializable interface

• Multiple Interface Inheritance

© 2004, Reliable Software, Inc.

Assemblies
• Programs are deployed as assemblies.

– Assemblies are either executables or libraries.
• Serialize.exe is an assembly

– Metadata about types in assembly is stored with
assembly (self-describing)

– Assembly itself has metadata
• Describes assemblies dependencies
• Version of assembly

© 2004, Reliable Software, Inc.

Assembly Metadata
.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 1:0:5000:0

}
.assembly extern System.Runtime.Serialization.Formatters.Soap
{
.publickeytoken = (B0 3F 5F 7F 11 D5 0A 3A)
.ver 1:0:5000:0

}
.assembly Serialize
{
...
Ver 1:0:0:0

}

© 2004, Reliable Software, Inc.

Assembly Version Policy
• Version is part of the assembly name.

– Unique name based on public/private keys.

• Private deployment
– Copy all files to application directory.
– No need for versioning or unique names.

• Public deployment in Global Assembly Cache (GAC)
requires strong name.
– Link to specified versions in config file.

• No more “DLL Hell”.

© 2004, Reliable Software, Inc.

Component Development
• An assembly is a component.

– Unified type system with language interoperability
– Properties, methods, and events exportable
– Design and run time attributes
– No COM infrastructure to implement.

• As, Is C# constructs allow interface query.
– As operator converts one interface type to another
– Is operator checks if interface is supported

• Metadata means no IDL or header files needed.
• C# Components be used from Web pages.

© 2004, Reliable Software, Inc.

Interoperability
• C# code can interoperate with:

– C++
– Win32 APIs
– COM components
– Other .NET languages
– XML and SOAP

• Easy learning curve from C++ or Java.

© 2004, Reliable Software, Inc.

Type Declarations
• Value Types (contain data, cannot be null)

– struct struct Point {int x; int y}

– primitive types
– enum enum Answer : int {Yes, No}

• Reference Types (refer to an object, can be null)
– Class
– Interface
– Delegate
– array (implements System.Array)
– String (alias for System.String)

• Reference types are allocated on the heap. Value Types can be
allocated on the stack, or on the heap if part of a reference type.

© 2004, Reliable Software, Inc.

Type Members
• No Global Variables in C#
• Structs and Classes can have members:

– Fields
– Constants, ReadOnly
– Methods
– Properties
– Indexers
– Operators
– Constructors
– Finalizers (use C++ destructor notation)

© 2004, Reliable Software, Inc.

Checking Account Example
public class CheckingAccount : Accountpublic class CheckingAccount : Account
{{

public CheckingAccount() { balance = 100;}public CheckingAccount() { balance = 100;}
public override void Deposit(decimal amount) {balance += amount;public override void Deposit(decimal amount) {balance += amount;}}
public override void Withdraw(decimal amount)public override void Withdraw(decimal amount)
{{

balance balance --= amount;= amount;
if (balance < 0) throw new Exception("Negative Balance.");if (balance < 0) throw new Exception("Negative Balance.");

}}
public void Show()public void Show()
{{

Console.WriteLine("balance = " + Balance);Console.WriteLine("balance = " + Balance);
}}

}}

© 2004, Reliable Software, Inc.

Primitive Types
• Signed sbyte, short, int, long
• Unsigned byte, ushort, uint, ulong
• Character char
• Floating Point double, float, decimal
• Boolean bool
• Aliases for system types:

– bool System.Boolean

© 2004, Reliable Software, Inc.

Class
• Single Implementation Inheritance
• Multiple Interface Inheritance
• Members can be static or instance
• Can have nested types
• Access can be public, private, protected or

internal

© 2004, Reliable Software, Inc.

Inheritance Intent
• To help solve the fragile basic class problem:

– methods are marked abstract or virtual
– they are not virtual by default
– methods in derived classes are marked new or

override

© 2004, Reliable Software, Inc.

Boxing and Unboxing
• Value Types can be converted to Reference

types when necessary

int x = 10;int x = 10;
object o = x;object o = x;
string s = o.ToString();string s = o.ToString();
int y = (int)o;int y = (int)o;

© 2004, Reliable Software, Inc.

Delegate
• Type safe function pointers

public delegate int RegisterCustomer(string firstName, string Lapublic delegate int RegisterCustomer(string firstName, string LastName);stName);
public void Process(RegisterCustomer customerFunc) {public void Process(RegisterCustomer customerFunc) {……}}

• Each delegate has an invocation list with type
safe methods for adding and removing from the
list.

© 2004, Reliable Software, Inc.

Events Use Delegates
public delegate void EventHandler(object sender, EventArgpublic delegate void EventHandler(object sender, EventArgs e); s e);

public class MenuItempublic class MenuItem
{{

public event EventHandler Click;public event EventHandler Click;

protected void OnClick(EventArgs e) {protected void OnClick(EventArgs e) {
if (Click != null) Click(this, e);}}if (Click != null) Click(this, e);}}

}}
……
MenuItem menuItem1 = new MenuItem();MenuItem menuItem1 = new MenuItem();
menuItem1.Click += new System.EventHandler(Draw_Click);menuItem1.Click += new System.EventHandler(Draw_Click);
private void Draw_Click(object sender, System.EventArgsprivate void Draw_Click(object sender, System.EventArgs e) {e) {……}}

© 2004, Reliable Software, Inc.

Properties
• Properties are methods treated as public fields.

private decimal balance;private decimal balance;

public decimal Balancepublic decimal Balance
{{

get { return balance;}get { return balance;}
set { caption = value; ComputeInterest();}set { caption = value; ComputeInterest();}

}}

• Used just like a field
decimal amount = account.Balance;decimal amount = account.Balance;

© 2004, Reliable Software, Inc.

Indexers
• Access object as if it was an array.

public class Listpublic class List
……..

private string[] names;private string[] names;
public string this[int index] public string this[int index]
{{

get {return get {return names[indexnames[index];}];}
set {names[index] = value;}set {names[index] = value;}

}}

List list = new List();List list = new List();
string first = list[2];string first = list[2];
list[1] = list[1] = ““John DoeJohn Doe””;;

© 2004, Reliable Software, Inc.

Improved C++ Expressions
• Conditionals must evaluate to a boolean.
• Switch statement has no automatic fall

through.
• foreach loop (read-only)
• = is illegal in a conditional

© 2004, Reliable Software, Inc.

C# Concepts are .NET Concepts
• NET is a virtual execution environment

– Defined in ECMA-335.
– ECMA-334 is the C# specification

• Program to a logical model.
– Compilers produce intermediate code, not native code.

• Logical to physical translation to physical code
happens on users machine through JIT compilation,
not on the developer’s machine.

© 2004, Reliable Software, Inc.

Logical Programming Model
• The Common Language Runtime (CLR)

• Memory management
• Security

• The Common Type System (CTS)
• Unified Type System
• Extensible metadata

• The Common Intermediate Language (CIL)
• Stack based, object

• The Common Language Specification (CLS)
• Language Interoperability

• Framework Class Library (FCL)

© 2004, Reliable Software, Inc.

Intermediate Language
• All .NET compilers emit Intermediate Language.

– ILDASM (IL Disassembler) can be used to view the IL
code and metadata. Useful for debugging and
understanding system code.

• CTS and IL make it possible for languages to
interoperate.
– IL code can be verified for all platforms.

• CLS defines language interoperability.
– Case sensitivity in public and protected members.
– Allows FCL to be used by all languages.

© 2004, Reliable Software, Inc.

Serialize.exe MSIL
IL_0000: newobj instance void [mscorlib]System.Collections.ArrayList::.ctor()
IL_0005: stloc.0
IL_0006: newobj instance void Customer::.ctor()
IL_000b: stloc.1
IL_000c: ldloc.1
IL_000d: ldstr "Charles Darwin"
IL_0012: stfld string Customer::name
IL_0017: ldloc.1
IL_0018: ldc.i4.s 10
IL_001a: conv.i8
IL_001b: stfld int64 Customer::id
IL_0020: ldloc.0
IL_0021: ldloc.1
IL_0022: callvirt instance int32

[mscorlib]System.Collections.ArrayList::Add(object)
IL_0027: pop

© 2004, Reliable Software, Inc.

Managed vs. Type Safe Code
• Garbage Collection is one of the services

provided by the Common Language Runtime .
– Data under CLR garbage collection control is

managed data.
– Code using CLR features is managed code.

• Managed code is not automatically type safe.
– C++

© 2004, Reliable Software, Inc.

Summary
• C# is a programming language that is a streamlined

version of C++ with less complexity.
• Memory references and garbage collection remove

major impediments to producing quality code.
• Since all types can be treated as objects, the

programming model is more powerful.
• Components can be easily developed.
• Development is faster.

	Metadata
	Attribute/Aspect Based Programming
	Framework Class Library
	Namespaces
	Garbage Collection
	Everything can be an Object
	Unified Type System
	Type Safety
	Robust Software Development
	Interface-Based Programming
	Assemblies
	Assembly Metadata
	Assembly Version Policy
	Component Development
	Interoperability
	Type Declarations
	Type Members
	Checking Account Example
	Primitive Types
	Class
	Inheritance Intent
	Boxing and Unboxing
	Delegate
	Events Use Delegates
	Properties
	Indexers
	Improved C++ Expressions
	C# Concepts are .NET Concepts
	Logical Programming Model
	Intermediate Language
	Serialize.exe MSIL
	Managed vs. Type Safe Code
	Summary

