
© Copyright Reliable Software, Inc.

Refactoring, Serialization, and
Version Hell

Michael Stiefel
co-author Application Development Using C# and .NET

www.reliablesoftware.com
development@reliablesoftware.com

© Copyright Reliable Software, Inc.

Goal: Reproducible Deployment
• Avoid “DLL Hell”
• Every installation has the same result
• Every uninstall is a complete removal
• Model: Install/Uninstall of a Compact Disc
• Allow side-by-side execution
• Test What You Ship
• Deterministic

© Copyright Reliable Software, Inc.

The Problem
• Deterministic Deployment requires Unique

Identifiers (Strong Names)
• Strongly Named Assemblies must reference

Strongly Named Assemblies
• Types are Assembly Relative
• Assemblies reference an assembly with a

particular identity.

© Copyright Reliable Software, Inc.

Assemblies Need Unique Identifiers

• Application “Bill of Materials”
• Determine What is Missing
• No Unique Id Example

– Not deterministic

© Copyright Reliable Software, Inc.

Unique Ids Require Strong Names
• Cryptographically Unique Name

– public / private key
• Incorporate Version

– allow versioning of assemblies
• Incorporate Culture
• Name-version-culture-public key
• Placed in Assembly Manifest

© Copyright Reliable Software, Inc.

Assemblies Referenced By Unique Id

• Public Key or Public Key Token of referenced
assembly
– Public Key Token is lowest 8 bytes of SHA1 hash

of public key
– more compact than public key

• Placed in referencing assembly at compile time
• Unique Id Example

– deterministic

© Copyright Reliable Software, Inc.

Note: Technically Optional
“A conforming implementation of the CLI need not
perform this validation, but it is permitted to do so, and it
may refuse to load an assembly for which the validation
fails. A conforming implementation of the CLI may also
refuse to permit access to an assembly unless the
assembly reference contains either the public key or the
public key token. A conforming implementation of the
CLI shall make the same access decision independent of
whether a public key or a token is used.”

Common Language Infrastructure
Partition II: Metadata Definition and Semantics
Section 6.3

© Copyright Reliable Software, Inc.

Determinism Must Propagate
• Strongly named assemblies must call into

strongly named assemblies
– Keeps determinism from the perspective of the

caller
– Strongly Named Reference Example

© Copyright Reliable Software, Inc.

Type is Assembly Relative
• Different Names Changes the Type

– Almost Identical Example
• Versioning an Assembly Changes the Type

– Types Example

© Copyright Reliable Software, Inc.

Implications …

© Copyright Reliable Software, Inc.

Version Compatibility
• Specified by version binding policy in the

application’s configuration file.
• Policy allows administrators to configure

applications without recompilation.
– Security Policy
– Version Binding Policy
– Remoting Configuration

© Copyright Reliable Software, Inc.

Version Policy
• Can indicate version equivalences for application
…
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<publisherPolicy apply = “yes” />
<dependentAssembly>

<assemblyIdentity name="Customer" publicKeyToken="f95c9298a3bfb06b" />
<bindingRedirect oldVersion="1.0.0.0-1.2.0.0" newVersion="1.2.0.0" />

</dependentAssembly>
</assemblyBinding>
…

• Version Policy Example

© Copyright Reliable Software, Inc.

Publisher Policy
• Can specify equivalent versions

– for major.minor version
• Can be turned off in application configuration

file for entire application
• Insure critical fixes get to all applications
• Not for upgrades
• Publisher Policy example

© Copyright Reliable Software, Inc.

Machine Policy
• Machine.config can have version policy set by

administrators
• Policy resolution order: app, publisher, admin

© Copyright Reliable Software, Inc.

Policy Hell
• Policy complicates a programmer’s life.
• Policy simplifies an administrator’s life.

– Eases application replacement
– Precise bug fix releases

• Version Hell is an example of Policy Hell.
• Get used to it!

– The world does not revolve around programmers.
– Would be easier with better tool support for rebinding or

source code control integration.

© Copyright Reliable Software, Inc.

Assembly Granularity
More precise releases
Emergency fixes
Security fixes
Easier to Find problems
Quicker development build cycle

vs.
Management of many assemblies

© Copyright Reliable Software, Inc.

Dependencies
• Within Assembly Dependencies OK
• Minimize Dependencies Among Assemblies
• Consider Assembly Dependencies as well as

Class Dependencies

© Copyright Reliable Software, Inc.

Refactoring
“the process of changing a software system in
such a way that it does not alter the external
behavior of the code yet improves its internal
structure.”

Martin Fowler
Refactoring: Improving the Design of Existing Code

© Copyright Reliable Software, Inc.

Logical vs. Physical Design
• Distinguish Logical and Physical Design
• Logical design = class design

– Keep software evolvable

• Physical design = class distribution among
assemblies
– Allow more precise upgrades
– Distributing classes among assemblies is not enough

• Physical Design Example

© Copyright Reliable Software, Inc.

Logical Dependencies
• Interfaces help decouple logical dependences.
• Design Patterns help decouple logical

dependences.
• Still have to think carefully.

– Physical Design Example Step 5
– Upside Down Example

© Copyright Reliable Software, Inc.

When to Version?
• Do release, then bump version number, clearer

when QA, users report mistakes.
• Change only when assembly changes
• Deploy changed assembly and revised version

file.
– use side by side deployment (Codebase, GAC)
– revert to previous versions through policy

• XCopy deployment to track different customer
deployments

© Copyright Reliable Software, Inc.

Refactoring Physical Design
• Moving Types example
• Version, rebuild affected assemblies
• Dynamic load produces complications

© Copyright Reliable Software, Inc.

Refactoring and Saved Data
• Serialization Example
• SerializationBinder to redirect type

– Changed Assembly version
– Type moved to different assembly
– Type no longer exists

• IDeserializationCallback
– data moved to different classes

© Copyright Reliable Software, Inc.

Class Versioning
• No direct relationship between assembly

versioning and class changes.
– Multiple versions can correspond to a single class

version (algorithmic changes)
– Multiple classes can exist in an assembly
– Person who versions assemblies may not be the

person who modifies a class

© Copyright Reliable Software, Inc.

Summary
• Goal : Reproducible install / uninstall
• Components must be uniquely identifiable
• Policy drives version compatibility
• Physical as well as Logical Design matters

	Refactoring, Serialization, and Version Hell
	Goal: Reproducible Deployment
	The Problem
	Assemblies Need Unique Identifiers
	Unique Ids Require Strong Names
	Assemblies Referenced By Unique Id
	Note: Technically Optional
	Determinism Must Propagate
	Type is Assembly Relative
	
	Version Compatibility
	Version Policy
	Publisher Policy
	Machine Policy
	Policy Hell
	Assembly Granularity
	Dependencies
	Refactoring
	Logical vs. Physical Design
	Logical Dependencies
	When to Version?
	Refactoring Physical Design
	Refactoring and Saved Data
	Class Versioning
	Summary

